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Abstract

Recent approaches to asset pricing involve the estimation of demand systems for

financial securities in which investors are permitted to have non-pecuniary tastes over

cash flow-irrelevant asset characteristics. We investigate theoretical foundations of

demand-system asset pricing using multiple approaches to integrating tastes with

portfolio choice. Our analysis raises several conceptual issues, including the appro-

priate notion of no arbitrage, the pricing of “redundant” assets, and the cardinal in-

terpretation of taste parameters. These issues imply multiple barriers to identifying

demand systems for financial securities from observational data, and raise questions

about the structural interpretation of financial demand elasticities. We discuss how

these issues affect counterfactuals constructed from estimated demand systems.
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1 Introduction

Recent approaches to asset pricing following Koijen and Yogo (2019) involve estimating

demand systems for financial assets in which investors are permitted to have non-pecuniary

tastes (or dogmatic beliefs) regarding the value of certain asset characteristics, such as

environmental or social scores. According to this approach, observed portfolio holdings

are related to investor preferences and beliefs, and thus carry information absent from

prices that can inform researchers about the equilibrium response to a variety of shocks,

such as investor tastes or capital reallocation (Koijen, Richmond, and Yogo, 2022).

This approach represents a sharp break from classical asset pricing, which empha-

sizes the fungibility of securities up to their cash flows and focuses on price data disci-

plined by no arbitrage. Given the unsatisfactory empirical record of classical approaches,

this stark dichotomy may well be an advantage. However, introducing preferences over

the provenance of cash flows, as opposed to over cash flows alone, also means jettisoning

much of the well-established theoretical foundations that underlie classical approaches.

Thus, as we move forward in this new direction, it is important to lay down proper foun-

dations for this approach and understand their implications for empirical work.

In this paper, we examine the theoretical foundations of demand-based asset pric-

ing by way of synthesis with canonical models of portfolio choice. In particular, we enrich

an endowment economy as in Lucas (1978) with potentially payoff-irrelevant character-

istics that affect investors’ tastes over assets, and derive portfolio demand functions that

are sensitive to risk, return and tastes.1 This allows us to distinguish “hedonic charac-

teristics,” such as environmental scores, from “cash flow characteristics” that have been

traditionally used to summarize the statistical properties of the cash flow distribution.

The incorporation of hedonic characteristics forces us to revisit some fundamen-

tal conceptual issues in theoretical asset pricing, such as the appropriate notion of no

arbitrage and the use of cardinal versus ordinal utility indices for tastes. We find that,

depending on the asset span, taste-based demand may lead to generic arbitrage opportu-

nities, and that integrating risk and return with tastes requires a cardinal interpretation of

taste parameters. These results have sharp implications for equilibrium short sales and

1As will become clear, there is close correspondence between preference-based tastes, and dogmatic
beliefs about asset returns. For expositional ease, we focus on tastes, but our results apply to dogmatic
beliefs as well.
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the pricing of redundant securities, as well as for the sensitivity of demand systems to

(arbitrary) changes in the unit of measurement for tastes.

We then draw out implications of these conceptual issues for demand-system iden-

tification using observational data on portfolio holdings. We argue that identification of

preference parameters is significantly more difficult in financial markets than in canonical

consumer good settings, and particularly so if short sales are either prohibited or unob-

served. As such, demand systems estimated using state of the art methods may produce

valid counterfactuals only for a narrow range of scenarios.

Demand estimation is perhaps the central problem in industrial organization. Ac-

cordingly, industrial organization researchers have developed a rich set of tools to esti-

mate preferences parameters from observational data (Berry and Haile, 2021). However,

financial assets present a number of unique challenges that differ sharply from the de-

mand for real goods typically studied in industrial organization. Thus, as we discuss, the

application of IO techniques is far from straightforward in the case of financial securities.

The first pertains to no arbitrage and the pricing of redundant securities. In con-

trast to most consumer good settings, traders who find a financial asset too expensive are

not forced to exit the market; they can (short) sell the asset. Importantly, they may do so

either directly or by trading an alternative portfolio that replicates the asset’s cash flows.

To discipline equilibrium prices and trading behavior given these considerations, classi-

cal asset pricing uses the notions the law of one price and and no arbitrage, which is the

idea that investors should not be able to receive “something for nothing.”

When investors have tastes over non-pecuniary characteristics, two assets with

identical cash flows need no longer have the same price. Thus, we need to modify the

definition of the Law of One Price to account for the provenance of the cash flows. Yet,

even with this broader understanding of the value of an asset, we find that with suffi-

ciently dissimilar tastes (given a set of allowable trades) in general there would not exist

a pricing function (stochastic discount factor) that leaves no arbitrage opportunities. This

has direct implications for equilibrium existence, incentives for short sales, and for the

use of demand systems for pricing untraded securities. In applied contexts, estimated

demand systems may be quite sensitive to misspecified investment universes (i.e., the set

of assets investors can trade, and the extent to which investors can engage in short sales).

The second pertains to investor preferences. Models of portfolio choice are based

2



on theories of choice under uncertainty, such as expected utility theory. As is well known,

expected utility theory imposes a cardinal interpretation of utility, which is a stronger re-

quirement than the ordinal rankings typically assumed in consumer good demand sys-

tems. Under a cardinal interpretation of tastes, identifying financial demand systems

requires identification of the intensity of tastes relative to risk-return considerations, not

just their ordinal ranking. In order to integrate non-pecuniary tastes with risk and return,

one must therefore admit a cardinal interpretation of taste parameters as well.

This fact has practical relevance. For counterfactuals, preference parameters must

be estimated for inframarginal investors as well. Moreover, portfolio choice is generically

sensitive to rank-preserving transformations of tastes, such as changes in the units of mea-

surement. Yet, investors may not agree on how to evaluate the “greenness” of an asset.

They may also find little consensus on how to aggregate multiple hedonic characteristics,

such as a firm’s environmental social scores, into a single asset-level score. Nevertheless,

empirical demand systems may be sensitive to such choices.

Having discussed these conceptual issues, we use a fully specified model of port-

folio choice under tastes to examine questions of identification and counterfactuals based

on observational data. The model is a variant of the Lucas (1978) endowment economy

in which assets (“trees”) may be endowed with payoff-irrelevant hedonic characteristics,

and investors can differ in their tastes for these characteristics. Addressing the question

of cardinal preferences, we work within the expected utility framework. This leads to a

framework where investors trade off tastes against canonical risk return considerations,

and asset-level taste parameters can be interpreted in marginal utils.

Our model nests two important benchmarks. First, if two assets offer identical cash

flows but differ in their hedonic characteristics, then an investor may prefer to buy only

the one that aligns with his tastes. In this case, tastes lead to equilibrium sorting. Second,

if all investors have the same tastes, then the model is equivalent to the canonical Lucas

tree framework that considers only risk and return. When both channels are active, prices

are affected by both fundamental cash flows and taste distributions.

This framework has several useful features. Since we fully specify the model, we

can explicitly solve for the “correct” counterfactual response to various shocks. Hence, it

is a useful laboratory for evaluating identification strategies. In additional, we can explic-

itly model common approaches to identification that rely on mandates (i.e., exogenous
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restrictions on the type of assets an investor can hold) to obtain variation in prices. These

are simply constraints on portfolio weights of particular assets. Hence, we use the model

to assess identification challenges in financial demand system estimation.

In general, demand system estimation requires price instruments whose variation

is sufficient to identify tastes for specific assets. For a general portfolio choice problem,

this is exceedingly difficult because the principle of diversification implies that any two

assets may exhibit non-linear patterns of complementarity and substitutability that are

shaped by the investor’s overall portfolio holdings. Hence, in general, even “clean” varia-

tion in a single asset price is not enough to identify demand systems because endogenous

portfolio changes create demand shocks in other assets (Berry and Haile, 2021).2

Even if price instruments are available, they may not suffice for identifying all

taste parameters required to construct counterfactuals based on observational data. Given

taste-based demand, an investor may only purchase her most preferred option in equi-

librium, and may short sell less-preferred options. If short sales are prohibited, observed

portfolio holdings may allow for inference on the ordinal ranking of a choice set, but there

may not be enough information to estimate cardinal tastes for assets not purchased in

equilibrium. When short sales are allowed but unobservable to the econometrician, as

they often are in practice, demand systems may be misspecified. As we illustrate using

our general equilibrium model, in either case it may be difficult to estimate taste parame-

ters sufficiently accurately to perform counterfactuals. More broadly, our analysis points

to a critical question that must be addressed empirically, which is to what extent, if any,

derivative securities inherit some of the taste properties of the underlying asset.

To evaluate these concerns, we use our framework to model common identifica-

tion approaches used in the demand-system asset-pricing literature. For example, Koijen

and Yogo (2019) use the sparsity of observed portfolios to construct instruments for as-

set prices. As the argument goes, sparse portfolios indicate that the investor may have

tightly prescribed mandates that make it costly to hold other stocks. If mandates and

fund flows are sufficiently exogenous to current investment opportunities, variation in

the extent to which a particular stock is present in observed portfolios may be used to

2One way around this problem is to restrict attention to settings where optimal portfolio weights are
linear functions of own prices and characteristics (Koijen, Richmond, and Yogo, 2022). In a static setting,
this is possible with, e.g., CARA preferences and normally distributed shocks to payoffs. However, even
these assumptions would not suffice in a dynamic setting. Given the importance of taste for portfolio
choice, prices would be a function of endogenous changes in the wealth distribution.
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construct a demand shifter that is independent of prices. We use our model to assess this

identification strategy, taking as given the exogeneity of mandates and fund flows. An

important concern is that mandates and tastes may be observationally equivalent given

equilibrium play, even as they have potentially very different implications for counter-

factuals. The reason is that mandate investors are insensitive to price changes, whereas

taste-based investors are not. As such, misjudging the share of mandate investors can

lead to qualitatively different counterfactual prices in response to shocks.

These concerns are naturally entangled with wealth effects. While price changes

always induce income and substitution effects, in most consumer good settings wealth ef-

fects are likely to be negligible and are thus frequently ignored when modeling demand.

In contrast, financial assets are investment goods, and so wealth changes may have first

order effects in portfolio choice. In particular, an investor’s measured elasticity for two

otherwise identical assets may be very different depending on if they already hold the

asset in their portfolio or not.3 Hence, it is important to control for the evolution of port-

folios when estimating demand elasticities.

We end by discussing the structural interpretation of demand elasticities. First, we

discuss how the structural interpretation of demand elasticities depends critically on the

investment universe. In particular, when there are close substitutes available, asset-level

demand elasticities may be very high even when consumption-level are low. Second we

show that even in classic general equilibrium frameworks such as Lucas (1978), demand

elasticities can range from near zero to near infinite, depending on whether the driving

shocks are common to all investors are merely introduce reallocative tades between in-

vestors. For these reasons, it is difficult to discriminate between models of asset pricing

based on estimated demand elasticities alone.

The rest of the paper is structured as follows. The rest of this section discusses

related literature. Section 2 discusses conceptual issues related to incorporating non-

pecuniary tastes in an asset pricing framework. Section 3 provides our framework. Sec-

tion 4 studies the implications on identification and counterfactuals. Section 5 discusses

the structural interpretability of asset demand elasticities. Section 6 concludes.

3This concern is amplified when interpreting investors as financial intermediaries, since capital flows
from households can induce wealth changes even when intermediary constraints and preferences are fixed.
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Related Literature

This paper studies the theoretical foundations of two closely-related literatures: demand-

based asset pricing that tries to model equilibrium returns using estimated portfolio choice

models as in Koijen and Yogo (2019), and models in which investors may hold certain fi-

nancial securities because of non-pecuniary values associated with them (Starks, 2023).

Demand-based approaches have been used to address a number of substantive

questions. These include computing counterfactuals for price informativeness and sus-

tainable investing in response to changing non-pecuniary tastes or changes in the size

distribution of institutional investors (Koijen, Richmond, and Yogo, 2022), global imbal-

ances and currency returns (Jiang, Richmond, and Zhang, 2023) or corporate bond returns

(Bretscher, Schmid, Sen, and Sharma, 2022).

The fact that estimated demand systems appear to reveal that financial institutions

exhibit rather low demand elasticities has also been used to argue that financial markets

as a whole are inelastic, with implications for the equity premium (Gabaix and Koijen,

2020). We show that such elasticities may not always be interpretable as deep param-

eters, and may differ by the level of aggregation and the nature of the shock. Inelastic

trading patterns are also often attributed to mandates, and these are used as instruments

to identify demand parameters. Our analysis suggests that it is difficult to empirically

distinguish between mandates and “tastes,” and this matters for counterfactuals.

Valued-based approaches have been used to study investment in so-called “green

assets,” such as stocks or bonds associated with sustainable, environmentally-friendly

firms or government expenditures. Pastor, Stambaugh, and Taylor (2021) provide an

equilibrium model of such sustainable investment, whereby firms differ in their “green

scores,” but the set of marketable securities consists only of firm shares and a risk-free

asset. We address implications and micro-foundations of such sustainable investing for

financial market equilibrium with redundant securities under various forms of tastes, and

ask how such tastes might be identified in equilibrium.

Pastor, Stambaugh, and Taylor (2022) provide early evidence that such tastes may

be reflected in yield differences between otherwise identical German government bonds,

while D’Amico, Klausmann, and Pancost (2023) show that the underlying “greenium”

appears to have shrunk over time. Our analysis shows that, in the presence of short sell-

ing by at least some investors, premiums extracted from marginal prices (i.e., prevailing
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market prices) may not be informative about infra-marginal preferences, and thus may

not be sufficient to infer counterfactuals. More generally, we argue that counterfactu-

als are sensitive to the precise modeling of environmental concerns, including to simple

monotone transformations of taste parameters. As such, one conclusion of our paper is

that there is research in modeling the precise foundations of tasted-based investment.

2 Incorporating Tastes into an Asset Pricing Framework

Demand-based asset pricing allows investors to have preferences over asset characteris-

tics that may or may not be directly related to cash flows. Incorporating tastes within

canonical asset pricing frameworks requires making a number of important conceptual

decisions that can substantially alter some of the key theoretical underpinnings of asset

pricing theory. This is because asset pricing requires a theory of choice under uncertainty,

and this places relatively stringent constraints on the way we model investor preferences.

The standard approach is von Neumann-Morgenstern expected utility theory, which

defines preferences over lotteries (distributions over payoffs). This approach is axiomatic,

and thus satisfies a number of desirable properties. However, it requires a cardinal inter-

pretation of utility functions, whereby only positive linear transformations of the utility

function preserve the underling preferences. We will show that this leads to two main

concerns. The first is that predictions for equilibrium portfolio choices under tastes will

be sensitive to the precise formulation of taste parameters (or taste functions). The second

is that identification of demand system requires the identification of taste intensities, not

just their ordinal ranking.

We consider two main formulations of tastes, and variants thereof. The first is

consumption-augmenting tastes, by which we mean that depending on their provenance

the investors derive additional “consumption-equivalent” value from asset cash flows.

This captures the notion that an investor may, ceteris paribus, value cash flows produced

by environmentally-friendly firms more than cash flows produced by other firms.4 The

second is consumption-separable tastes, by which we mean that the investor obtains some

additional value (or disutility) from holding certain assets. This captures the idea that an

investor may earn a “warm glow” from its holding in addition to potential cash flows.

4This is similar to the idea that some consumers are willing to pay more for fair trade certified foods
which are otherwise identical.
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However, it will turn out that both approaches lead to similar conceptual issues.

Consumption-Augmenting Tastes. Consider a one-shot portfolio choice problem in which

an investor can choose to consume at date 0 and/or at date 1. A random state of the world

z ∈ Z := {1, . . . , Z} is realized at date 1, and the probability of state z is πz ∈ (0, 1). The

set of assets is J . Asset j ∈ J offers state-contingent cash flows yj(z) in state z. There is

a set of investors indexed by i. Investor i has a von Neumann-Morgenstern utility func-

tion defined over lotteries. She evaluates her payoffs from holding a certain portfolio of

assets (ai
j)j∈J by the cash flows it generates, and by her tastes (θi

j)j∈J over assets, where

θi
j > 0. To integrate tastes with portfolio choice, we define the effective units of consumption

delivered by a portfolio (ai
j) for consumer i in state z to be

c̃i
1(z) = ∑

j
θi

jyj(z)ai
j + wi

1(z),

where wi
1(z) captures a non-marketable endowment that may be zero.5 Tastes differenti-

ate effective consumption from pure consumption, which is defined as

ci
1(z) = ∑

j
yj(z)ai

j + wi
1(z).

Under consumption-augmenting tastes, investor i’s portfolio maximization problem is to

maximize expected utility over effective consumption subject to budget balance,

max
(ai

j)j∈J
(1− β)ui(ci

0) + β ∑
z∈Z

πzui(c̃i
1(z)) (P-CA)

s.t. ci
0 = wi

0 − ∑
j∈J

pj(ai
j − ei

j)

c̃i
1(z) = ∑

j∈J
θi

jyj(z)ai
j + wi

1(z),

where β is the discount factor, pj is the price of asset j, wi
0 is initial wealth, and ei

j is investor

i’s endowment of asset j. It is clear that tastes can lead to heterogeneous portfolios even

5Another possibility is to define consumption-augmenting tastes in an additive manner, c̃i(z) = ∑j(θ
i
j +

yj(z))ai
j + wi

1(z). The main difference is that tastes operate like a ”risk-free” component of returns for
every asset, with obvious implications for portfolio choice. Overall, however, the main conclusions are
unchanged.
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when investors share beliefs about the cash flows generated by all assets and do not differ

in their non-marketable endowment.

Additive Separable Tastes. In the previous approach, tastes directly modified an in-

vestor’s evaluation of her consumption process. An alternative specification is to model

tastes as affecting investor utility additive-separably from consumption according to func-

tion Gi
(
(ai

j)j∈J
)

that maps the investor’s portfolio into utils. The decision problem un-

der separable tastes can then be written as:

max
(ai

j)j∈J
(1− β)ui(ci

0) + β ∑
z∈Z

πzui(ci
1(z)) + Gi

(
(ai

j)j∈J
)

(P-AS)

s.t. ci
0 = wi

0 − ∑
j∈J

pj(ai
j − ei

j)

ci
1(z) = ∑

j∈J
yj(z)ai

j + wi
1(z),

where the utility function is now defined over pure, rather than effective units of, con-

sumption. We assume that Gi(·) is twice continuously differentiable in each element. We

also assume that it is strictly monotone in each element, but allow the marginal contribu-

tion to the non-pecuniary value to be positive for some assets and negative for others.

The main difference from the consumption-augmenting approach is that the non-

pecuniary benefits of holding certain assets do not directly depend on the properties of

the utility function ui. For example, tastes do not necessarily induce wealth or substi-

tution effects in portfolio choice. While this may be an advantage for particular appli-

cations, it also has the drawback that it is generally difficult to discipline the particular

functional form of Gi. Yet, the functional form will generally determine the trade-off be-

tween pecuniary and non-pecuniary aspects of portfolio choice. Hence, portfolio choices

will generically not be invariant to monotone linear transformations of Gi.

The rest of this section discusses two main implications of asset pricing with tastes:

(i) that they may invalidate standard notions of no arbitrage that form the backbone the-

oretical asset pricing, and (ii) that they require cardinal interpretations of tastes (despite

various characteristics being difficult to measure).
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2.1 No Arbitrage with Tastes

Perhaps the most important theoretical concept in classical asset pricing theory is no arbi-

trage, which is the requirement that an equilibrium price system should not admit trades

in which an investor receives something for nothing. Operationalizing this concept re-

quires a theory of value. In the classical approach, the appropriate notion of value is cash

flows, and an arbitrage is “something for nothing,” or, more formally, “an investment

strategy that guarantees a positive payoff in some contingency with no possibility of a

negative payoff and no initial net investment” (Ross, 2004).

In the classical approach, a payoff space X (the set of attainable payoffs) and a

pricing function p are sufficient to define no arbitrage.

Definition 1 (No Arbitrage (Cochrane, 2005)) A payoff space X and pricing function p leave

no arbitrage opportunities if every payoff x ∈ X that is always weakly positive, x ≥ 0 almost

surely, and strictly positive, x > 0, with some positive probability, has positive price, p(x) > 0.

This definition is critical for deriving basic properties of price systems, including the ex-

istence of positive stochastic discount factors.

When investors differ in their tastes, the aforementioned definition is not sufficient

because investors do not evaluate investment opportunities on the basis of cash flows

alone. In particular, investors may have subjective views on what constitutes “something

for nothing.” Because investors also evaluate the value of cash flows in part according

to their provenance (i.e., which assets generated said cash flows), a payoff space alone

is not sufficient for defining valuations. We therefore define no arbitrage under payoff-

augmenting tastes as follows (Analogous results obtain with additive-separable tastes).

There are J assets indexed by j ∈ J . The J × Z matrix of cash flows is Y. A vector

of holdings in RJ defines a portfolio denoted by a ∈ A, where A is the set of feasible

portfolios. The price of asset j is pj, and pricing function P : A → R maps portfolios into

portfolio prices according to P(a) = ∑j pjaj.

Investor i has a taste function vi : A → RZ that maps a portfolio a into a 1× Z

vector of state-contingent taste-augmented payoffs. In the absence of tastes, all investors

care only about cash flows as in standard asset pricing, vi(ω) = a ·Y.

Definition 2 (No Arbitrage with Payoff-Augmenting Tastes) Given a set of assets A and

taste functions vi for all investors i, pricing function P leaves no arbitrage opportunities if, for any
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investor i and any portfolio such that the effective payoff is weakly positive, vi(a) ≥ 0, and strictly

positive, vi(a) > 0 with strictly positive probability, the associated price is positive, P(a) > 0.

We then have the following theorem regarding no arbitrage with tastes.

Theorem 1 (Generic Arbitrage Opportunities with Payoff-Augmenting Tastes) Fix a set

of assets and taste functions vi for all investors. There does not exist pricing function P such that

there are no arbitrage opportunities for any investor if and only if:

there exist a, vi, vi′ such that vi(a) > 0 and vi′(a) ≤ 0. (C)

A sufficient but not necessary condition for (C) is that there exists assets j and j′ such that

(i) both assets have identical cash flows

yj(z) = yj′(z) for all z ∈ Z

(ii) there exist investors i and i′ with sufficiently heterogeneous tastes with respect to these assets,

vi
j ≥ vi

j′ and vi′
j ≤ vi′

j′ with at least one inequality strict.

The central content of this result is that no arbitrage fails if tastes are sufficiently

heterogeneous and the asset menu is sufficiently rich. This can be most transparently seen

in a simple two asset economy.

Example 1 (Green and Red Assets) There is a green asset and a red asset with prices denoted

by pg and pr, respectively. Both assets deliver a unit payoff with certainty. There are two investor

types that differ in their relative taste for the two assets. Type 1’s tastes-augmented payoffs for

green and red assets satisfy θ1
g > θ1

r , respectively; Type 2 has θ2
g < θ2

r . We consider a long-short

portfolio consisting of selling one unit of the green asset and buying one unit of the red asset. The

price of this portfolio is p({−1, 1}) = pr − pg. Hence, investor i’s taste-augmented payoff is

θi
r − θi

g. The absence of arbitrage opportunities for Type 2 requires that p∗ < 0. Since Type 1 can

conduct the trade in reverse, no arbitrage for that type requires p∗ > 0. Hence, there exists no

prices {pg, pr} such that no type has an arbitrage opportunity.

The result is a direct implication of the fact that investors care about non-pecuniary

factors, that taste differences are invariant to quantities (i.e., marginal valuation differ-

11



ences are invariant to portfolio holdings), and that investors are free to short either asset.

Price changes are then not sufficient to equilibriate asset markets.

Remark 1 (Implications for Law of One Price) Violations of no arbitrage may exist even if

the law of one price (LOOP) holds conditional on the asset “color.” In particular, in the presence of

tastes LOOP can be defined as requiring that two assets which deliver identical taste-augmented

payoffs must have the same price. However, the example shows that, even if LOOP holds for

individual assets, one can still construct portfolios over which investors have strict disagreements

(in the sense that any price system must offer a strict arbitrage opportunity to at least one investor.)

As we explain in more detail in later sections, this result has a number of theoret-

ical and practical implications. On the theory side, one must worry about equilibrium

existence and/or the precise nature of short-selling costs. In terms of practical imple-

mentation, it appears particularly difficult to identify taste parameters without observing

short sales (as is often the case for common data sources). On the conceptual front, one

must worry about whether redundant assets (in terms of their cash flows) inherit the

non-pecuniary benefits of underlying assets. This raises a number of questions about the

precise foundations of non-pecuniary tastes. Do they relate to the ultimate projects they

fund? Are they fungible across financial instruments, or are they tied to governance as-

pects of e.g. stocks? If so, do they matter only to the extent that ownership allows the

investor to affect equilibrium governance? Answers to these questions appear critical to

be able to develop a full-fledged theory of taste-based asset pricing.

2.1.1 Restoring No Arbitrage under Tastes

There are two ways to potentially restoring no arbitrage under tastes. The first is to restrict

the set of feasible portfolios, for example by not allowing short-sales on certain assets. A

downside of doing so is that equilibrium prices will then closely related to the precise

formulation of these constraints, and that equilibrium will be sensitive to potentially un-

observable trading opportunities.6

A second approach is to introduce a notion of decreasing marginal tastes, whereby

the marginal augmentation of payoffs by tastes converges to zero for sufficiently large
6There is a similarity between the failure of no arbitrage under tastes and equilibrium “mispricing” due

to dogmatic differences in beliefs about cash flows. The key difference is that tastes are defined over assets
characteristics rather than cash flows. Hence violations of no arbitrage may persist even when two assets
are known to deliver identical cash flows.
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asset holdings. This allows investors to potentially agree on marginal valuations even if

they differ in their infra-marginal tastes. The downside of this approach is that it presents

additional identification issues when trying to measure the taste function.

2.2 Sensitivity to Rank-Preserving Transformations of Tastes

Expected utility preferences imply a cardinal interpretation of utility functions, which

means that the underlying preferences are preserved only under positive linear trans-

formations of the utility function. We now show that this leads to a strong sensitivity

of optimal portfolio choices to the intensity and functional form of tastes, even holding

ordinal rankings of taste parameters fixed.

Define investor i’s marginal rate of substitution between effective units of con-

sumption in state z and state 1 as:

Λ̃i(z) ≡
πzβui′

(
∑j θi

jyj(z)ai
j + wi

1(z)
)

(1− β)ui′
(

wi
0 −∑j pj(ai

j − ei
j)
) ,

where ui′ is the derivative of the utility function. The analogue marginal rate of substitu-

tion with respect to pure consumption is:

Λi(z) ≡
πzβui′

(
∑j yj(z)ai

j + wi
1(z)

)
(1− β)ui′

(
wi

0 −∑j pj(ai
j − ei

j)
) .

The optimality condition for ai
j with consumption-augmenting tastes is:

θi
j ∑

z
yj(z)Λ̃i(z) = pj.

The optimality condition for ai
j under separable tastes is:

∑
z

yj(z)Λi(z) + gi
j

(
(ai

j)j∈J
)
= pj,

where gi
j is the partial derivative of Gi with respect to ai

j.

These conditions relate the standard risk-return tradeoff, measured by the distri-

bution of marginal utility across states, to investor tastes. The solutions to these programs
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depend on the functional form of tastes and are not invariant to simple monotone trans-

formations. This means that identifying demand systems requires measuring the inten-

sity of tastes, not just their ordinal ranking.

Proposition 1 (Sensitivity to Rank-preserving Transformations) The solution to Program

(P-CA) is sensitive to rank-preserving transformations of θi = (θi
1, θi

2, . . . , θi
J), including positive

linear transformations and mean-preserving spreads of taste parameters. The solution to Program

(P-AS) is sensitive to monotone transformations of Gi(·), including linear positive transforma-

tions such as the re-scaling of the units in which tastes are measured.

The intuition for this result is straightforward. In the case of consumption-augmenting

tastes, increasing the nominal value of θj increases the consumption-equivalent value of

holding asset j, leading the investor to allocate more funds to this asset and distorting the

overall portfolio. Increasing tastes for all assets simultaneously raises the value of holding

all assets, which leaves portfolio weights unchanged but alters the consumption-saving

decision between dates 0 and 1.

In the case of separable tastes, portfolio choices trade off the marginal increase in

non-pecuniary values against the risk-return trade-off as measured by marginal utility

over consumption. Since expected utility is cardinal, any rank-preserving transformation

(such as a change in units) will alter the optimal portfolio. This is concerning because

non-pecuniary tastes do not have natural units of measurement.

3 Framework

The previous section discussed some foundational conceptual issues related to incorpo-

rating non-pecuniary tastes in an asset pricing framework. In this section, we construct

a tractable framework with consumption-augmenting tastes to study issues of identifica-

tion and counterfactuals using state-of-the-art methods.

We use the consumption-augmenting approach because it allows us to use much

of the theoretical scaffolding of expected utility theory and it aligns closely with existing

approaches in the literature (Koijen, Richmond, and Yogo, 2022). However, the main

results carry over to the case of additive-separable tastes.
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3.1 A Taste-Augmented Lucas (1978) Economy

Environment. There is a single period of trading and all information is public. Asset

payoffs depend on the realization of an aggregate state z ∈ {1, 2} that is realized at date

1. The probability of state z is given by πz ∈ (0, 1). Associated with each state z is a

Lucas tree that pays off yz if the state is z. Trees are perfectly divisible, and the aggregate

supply of each tree is equal to one. The tree associated with state 1 is composed of two

equally sized branches: red and green. Conditional on aggregate state 1, the green branch

pays yg(ι) and the red branch pays yr(ι), where ι ∈ {r, g} is a distributional shock that

determines which of the two branches offers more cash flows. In particular, let

yg(ι) =

y1 − ε if ι = r

y1 + ε if ι = g
and yr(ι) =

y1 + ε if ι = r

y1 − ε if ι = g
.

Given these payoffs, it is clear that the distributional shock is fully diversifiable because

1
2

yg(ι) +
1
2

yr(ι) = y1 for all ι.

Parameter ε ∈ [0, y1) determines the substitutability of red and green trees. If ε = 0,

then red and green trees are perfect substitutes with respect to their cash flows. If ε > 0,

they are complements because holding both serves to diversify distributional risk. The

probability of the red tree doing better is denoted by Pr(ι = r) = ρ.

Given this structure, one can think of assets as having two “characteristics:” the

aggregate state of the world in which their payoffs accrue (i.e., 1 or 2), and their color.

These characteristics determine in which states cash flows accrue (and thus serve as useful

statistical summaries of the overall cash flow distribution), and they can also be used to

define non-pecuniary tastes. When Type 1 trees are perfect substitutes (ε = 0), the color

characteristic is irrelevant for cash flows and only matters through its link with tastes.

When Type 1 trees are imperfect substitutes (ε > 0), even investors without tastes (θi
j = 1)

care about the color characteristic because it summarizes cash flow risk.

To focus on variation in the price of red and green trees, we use the following

assumption in all of our numerical examples.

Assumption 1 (Aggregate symmetry) Aggregate payoffs are y1 = y2 = 1, and the probability

of each aggregate state is equal to one half, π1 = 1
2 .
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Investors. There are two types of investors indexed by i. (Our results readily generalize

to many types, or to a continuum of types.) Types determine an investors’ endowment,

tastes, and mandates. Specifically, let investor i be endowed with ei
g, ei

r and ei
2 units of

green, red, and state 2 trees, where aggregate feasibility dictates that

∑
i

ei
j =

1
2

for j ∈ {g, r} and ∑
i

ei
2 = 1.

Although this is not necessary, it is helpful to work with a relatively symmetric

setting. Hence we will typically assume that Type 1 owns share ω ≥ 1
2 of the aggregate

endowment of each tree, e1
g = e1

r = ω
2 and e1

2 = ω.

Investor i takes positions ai
j in asset j ∈ J ≡ {g, r, 2}, and may be subject to short

sale constraints: ai
j ≥ 0. The investor evaluates the payoffs of his portfolio using effective

units of consumption. In particular, this object is defined as

c̃i(z) = ∑
j∈J

θi
jyj(z)ai

j.

In this expression, θi
j represents agent i’s private tastes over assets. Taste parameters allow

us to nest characteristics-based demand as distinct from cash-flowed based risk-return

considerations. For simplicity, we assume that tastes are irrelevant for Tree 2: θi
2 = 1 for

all i. Hence, tastes only affect relative preferences for red and green trees. Since Section 2

has shown that rank-preserving variation in the taste distribution can have independent

effects on portfolio choice, for transparency we will mainly focus on the sparse specifica-

tion θ1
g = 1 + t and θ1

r = 1− t, while θ2
g = 1− t and θ2

r = 1 + t. This means that Type 1

prefers green while Type 2 prefers red. However, this choice is not necessary.

Investors care only about consumption at date 1. Relative to Section 2, this sim-

plifies matters in that variation in the level of non-pecuniary tastes cannot distort any

consumption savings decision. Hence, we can focus on identifying cross-sectional asset

pricing and portfolio choice effects. We work within the expected utility framework. In

particular, we assume that investor preferences over state-contingent effective units of

consumption are given by CRRA utility. Our numerical examples use log utility.

Investors (or delegated managers) may also face different mandates, which are ex-

ogenous restrictions on permissible portfolios. We incorporate mandates because they

have been argued to be useful for identification of demand systems (Koijen and Yogo,
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2019). Since tastes only affect red and green trees, we define mandates over these assets

as well. Given market prices pg and pr, define the portfolio share of green trees among

red and green trees as

wi
g =

pgai
g

pgai
g + prai

r
.

A mandate is a restriction that imposes, for parameters wi
g and wi

g, that

wi ∈ [wi
g, wi

g].

Decision Problem. We normalize the price of Tree 2 to p2 = 1. The budget constraint is

ai
2 + pgai

g + prai
r = ei

2 + pgei
g + prei

r.

Substituting consumption in state 2, the decision problem of investor i is:

max
ai

g,ai
r≥0

π1

[
ρu
(

θi
gyg(r)ai

g + θi
ryr(r)ai

r

)
+ (1− ρ)u

(
θi

gyg(g)ai
g + θi

ryr(g)ai
r

)]
+π2u

(
ei

2 + pg(ei
g − ai

g) + pr(ei
r − ai

r)
)

s.t. wi
g ∈ [wi

g, wi
g]. (1)

Our equilibrium concept is competitive equilibrium.

Definition 3 (Competitive Equilibrium) A competitive equilibrium consists of asset prices pg

and pr and portfolios (ai
g, ai

r, ai
2) for each i such that:

1. Given asset prices, portfolios solve decision problem (1) for each i.

2. Markets clear for every asset:

∑
i

ai
j =

1
2

for j ∈ {r, g} and ∑
i

ai
2 = 1.

3.2 Optimal Portfolio Choice

We now solve for equilibrium demand systems and prices and discuss identification chal-

lenge. It is instructive to begin with the case where mandates do not bind for any investor.
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In this case, demand functions are determined by the following first-order conditions:

ai
g : π1ρθi

g(y1 − ε)u′
(

c̃i
1r

c̃i
2

)
+ π1(1− ρ)θi

g(y1 + ε)u′
(

c̃i
1g

c̃i
2

)
≤ (1− π1)pg;

ai
r : π1ρθi

r(y1 + ε)u′
(

c̃i
1r

c̃i
2

)
+ π1(1− ρ)θi

r(y1 − ε)u′
(

c̃i
1g

c̃i
2

)
≤ (1− π1)pr,

where c̃i
1r and c̃i

1g represent effective units of consumption depending on whether the

red or green tree offers relatively high cash flows, respectively. These conditions hold

with equality whenever the investor chooses a positive quantity of the associated asset.

Whether this is the case in equilibrium depends on the distribution of tastes.

This demand system is non-linear and exhibits complementarities: a change in the

price of one asset alters the demand for all other assets. This is because, when ε > 0, there

is a diversification benefit to holding both red and green trees. As Berry and Haile (2021)

point out, in settings with demand complementarities it is generally not enough to have

a valid instrument for a particular price.

Asset demand is also sensitive to the intensity of tastes. By this we mean that vari-

ation in θi
j will drive changes in portfolios even when the ordinal ranking of preferences

is preserved. This is not necessarily true in some discrete choice models of durable good

purchases, where the outcome of interest is a binary choice. An implication is that the

estimation of counterfactual asset demands generally requires identifying cardinal values

of tastes. In the language of asset pricing, defining a stochastic discount factor requires in-

corporating the exact value of the marginal investor’s tastes. The difficulty in identifying

such a SDF is that tastes may be latent given equilibrium play.

3.3 Representative Agent Benchmark: No Tastes

To build intuition, we first solve the model without tastes: θi
j = 1. As in Lucas (1978),

this leads to the representative agent framework in which the representative agent holds

the aggregate endowment in equilibrium, and is thus well-diversified in aggregate state

1. Given that total output in state 1 is a constant, we can define by

p1 ≡
pg + pr

2
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the price of a sure claim on one unit of consumption in state 1. Then prices are

p1 =
π1

1− π1
y2 and pr − pg = 2ε

π1

1− π1
(2ρ− 1)

y2

y1
.

The prices of claims on aggregate states reflect the relative scarcity of aggregate consump-

tion across the two states, and price differences between red and green assets are driven

by the distribution over the distributional shock ρ. With symmetric aggregate states (i.e.,

y1 = y2 = 1 and π1 = 1
2 ), this yields

p1 = 1 and pr = 1 + (2ρ− 1)ε.

3.4 Equilibrium with Tastes: Endogenous Sorting

Next, we consider the case with tastes. Because different investors may disagree on the

marginal value of investing in a particular asset, there may be endogenous sorting in

equilibrium. By this, we mean that investors with a taste for green assets will hold only

green assets, while those with a taste for red assets will buy only red assets. (Of course,

both will hold Tree 2 as well.)

We guess and verify that Type 1 specializes in green assets, and vice versa. Then

Type 1’s consumption in state 1 is θ1
gyg(ι)a1

g, and vice versa for Type 2. By the first-order

conditions for optimal portfolios, demand functions are

Type 1: a1
g =

1
pg

π1

1− π1
a1

2;

Type 2: a2
r =

1
pr

π1

1− π1
a2

2;

and consider only the trade-off between Tree 2 and one specific color. Observe that these

demand functions are independent of the particular intensity of tastes: since the equilib-

rium features sorting, only the ordinal ranking of tastes matters.

While this is reminiscent of consumer good settings (for example, discrete choice

over automobiles), sparse portfolio choices may be particularly problematic in financial

markets. In particular, under the cardinal interpretation of preferences required for ex-

pected utility framework, the intensity of tastes will affect portfolio choice when investors

hold both assets in equilibrium. Since taste intensities are latent on the equilibrium path

when sorting occurs (in particular, they can only be identified up to their ordinal proper-
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ties), counterfactuals are vulnerable to incorrect inference about taste intensities.

To illustrate this issue, we verify whether sorting can be sustained in equilibrium.

Evaluating the first-order condition for a1
r at a1

r = 0, it is indeed optimal for Type 1 to

refrain from purchasing red trees if and only if

pr

pg
≥ θ1

r
θ1

g

[
ρ

y1 + ε

y1 − ε
+ (1− ρ)

y1 − ε

y1 + ε

]
.

This inequality states that the relative price of red trees must be high enough relative to

the relative taste for red trees, adjusted by the benefits of diversification within state 1. In

the equilibrium with sorting, moreover, relative prices are driven by wealth shares:

pr

pg
=

1−ω

ω
.

Hence, shocks to the wealth distribution or the degree of complementarity of red and

green trees (as determined by ε and ρ) can lead sorting to break down. Shocks to wealth

are precisely the type of counterfactual entertained by Koijen, Richmond, and Yogo (2022).

We now demonstrate that equilibrium demand functions do indeed depend on the

intensity of taste parameters once there is partial sorting. We obtain simple closed-form

solutions for the case where trees are perfect substitutes, i.e., when ε = 0.

Proposition 2 (Equilibrium with and without sorting) Let θ1
r /θ1

g < 1 and assume ε = 0.

There exists a threshold ω for Type 1’s wealth share ω such that Type 1 buys only green trees if

ω ≤ ω and buys both red and green trees if ω > ω. When this is the case, prices are determined

by Type 1’s taste parameters, pg = θ1
g and pr = θ1

r , and the quantity of red trees held by Type 2 is

a2
r =

1−ω

2

1
2 E2 + θ1

gEg + θ1
r Er

θ1
r

,

where E2 = 1 and Eg = Er =
1
2 denote the aggregate endowments of each tree.

The result highlights that, conditional on a shock to the wealth distribution, prices

and quantities are now determined by the intensity of Type 1’s tastes, not just their ordinal

ranking. Since these are latent conditional on equilibrium play, it is difficult to conduct

counterfactuals based on observational data that feature sparse portfolios. While we il-

lustrate this in a setting with only two types, the insight naturally generalizes to many
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types. In this case, equilibrium portfolios do not reveal preferences of infra-marginal in-

vestors. Yet, identifying preference parameters of inframarginal investor is critical for any

counterfactual in which investors may rebalance their portfolios on the extensive margin.

Figure 1 shows equilibrium prices for the entire range of wealth ω and substi-

tutability ε. The left panel shows the green price pg, and the right panel shows the price

of a sure claim on state 1, p1 =
pg+pr

2 . In the left panel, sorting occurs in the linear region

near the origin, but breaks down as either Type 1 becomes too wealthy or the diversifica-

tion benefits become too large. In response to shocks, the relative price of green trees (and

thus the underlying demand system) is highly non-linear in fundamentals. In contrast,

the aggregate price of state 1 is flat in the entire region, as in the representative agent

benchmark. This is because, conditional on a well-specified stochastic discount factor that

takes into account tastes, every investor remains well-diversified within state 1.
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Figure 1: Green Price (Left) and State 1 Price pg+pr
2 (Right).

4 Identification and Counterfactuals

4.1 On Identification and Counterfactuals with Mandates

In addition to tastes, investors may be distinguished by their mandates. In practice, this

means that certain investors only invest in the S&P500, or only in companies that have

high Environmental, Social, and Governance (ESG) scores. While mandates may be a

contributing factor to observed portfolio choices, they have also been put forth as helpful

for identifying demand systems (Koijen and Yogo, 2019). As the argument goes, an asset
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that is inside the “investment universe” of many investors will be in higher demand,

and thus see higher prices, than an otherwise similar asset that is not widely held in

many investment universes. Putting aside for a minute the concern that mandates may

be chosen in response to investment opportunities, we can consider the implications of

this identification strategy in our model.

In particular, say there is a share m of Type 1 investors that are not permitted to

invest in red trees. While this is a very stark mandate, it is the type of mandate that would

be ideal for the identification strategy in Koijen, Richmond, and Yogo (2022) because it is

entirely inflexible with respect to changes in investment opportunities. Mandates are

observed by investors, but not by the econometrician.

The demand function of mandate investors (superscript M) trades of green trees

with Tree 2. Under log utility, they spend share π1 of their wealth on green trees:

aM
g = π1 ·

eM
2 + pgeM

g + preM
r

pg
.

Mandates and tastes for green assets are observationally equivalent to the extent that the

equilibrium features sorting; that is, tastes and mandates are both valid microfoundations

for sparse portfolios. However, they differ when non-mandate investors choose to hold

both red and green assets. This threatens the validity of counterfactuals. In particular,

shocks to the wealth of Type 1 will result in different counterfactual prices when many

investors are subject to mandates versus when they are not.

Proposition 3 The equilibrium response to shocks to wealth ω or complementarity ε may be

qualitatively different depending on the share of mandate investors m.

Figure 2 illustrates this result. When there are almost no investors with mandates,

a shock to ε creates more demand for diversification. Hence, the price of green trees is

decreasing in ε if Type 1 investors choose to hold both types of trees. Mandate investors

do not buy red trees at any price. Hence, shocks to ε do not reduce their demand for green

trees even as Type 2’s demand increases. Hence, the price of green trees may be increas-

ing in ε when there are sufficiently many mandate investors. Hence, the observational

equivalence of tastes and mandates creates the risk that counterfactuals are misspecified.

More broadly, identification based on mandates is threatened by the lack of a the-

ory of delegation. In practice, mandates are typically imposed on funds (such as mutual
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Figure 2: Green Price. Left: Low Mandate Share (m ≈ 0). Right: High Mandate Share (m ≈ 0.85).

funds), not end investors (such as households). This means that even very tight mandates

are irrelevant as long as end investors can flexibly reallocate investments across funds.

Proposition 4 Consider a two-layer structure where households invest through funds, and funds

are subject to mandates. Suppose further that there exist at least one red and one green fund.

Absent other frictions, equilibrium is invariant in mandates.

In practice, researchers have pointed out that households may be slow to rebal-

ance, or do so in predictable manners at regular intervals (i.e., quarter end). While it is

possible that this may help with identification, the argument is incomplete: if some in-

vestors are known to rebalance intermittently, other investors may trade preemptively

only to later sell. In this sense, intermittent rebalancers’ tastes may be reflected in market

demand even when they are not actively trading.

4.2 Equilibrium Consequences of Short Sales

As discussed in Section 2, the classical law of one price may fail to hold when investors

differ in terms of their tastes. We now illustrate consequences of this fact by introducing

a set of investors who can freely sell short any asset. Such investors are likely to have

outsize implications for equilibrium prices. We show this mechanism under the assump-

tion that red and green trees are perfect substitutes in terms of their cash flows, ε = 0. In

this case, optimal portfolio choices are bang-bang, and the investor takes an infinite short

position whenever the relative price of red and green trees is misaligned with her tastes.
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Proposition 5 Let ε = 0. We enrich the model with a single investor type, indexed by S, who

can freely short. Then the relative price of red and green trees is given by

pg

pr
=

θS
g

θS
r

and is independent of any other parameters in the model.

The proposition states that an agent who can freely short trades until relative prices

are aligned with her tastes irrespective of any other parameters. In practice, there may

be short-sale constraints or other limits to arbitrage that prevent large short positions.

However, this merely means that researchers have to measure when they might bind.

Two considerations make this difficult in practice: researchers may not observe

short positions, nor do they have universal coverage of all investors in a given market.

These data limitations make it difficult to infer taste parameters from equilibrium play.

4.3 Endogenous Wealth Effects

We now discuss another important feature of financial markets—portfolios are regularly

marked to market. This means that, even holding preferences fixed, an individual who

already owns a particular stock will exhibit different demand elasticities in response to a

price change than an investor who does not. Hence standard instruments that may work

well in consumer good settings (where purchases are one shot) will not be sufficient to

identify asset demand systems.

This simple logic also has implications for the case of “index deletions.” In particu-

lar, assume that an investor is mandated to hold only assets that are in a particular index.

Assume that green and red were initially the index, before red surprisingly drops out.

Hence, the investor must divest upon deletion. We call the short-run demand curve the

one that determines demand right upon deletion, and the long-run demand curve the one

that obtains once short-run adjustments have occurred. Assume for illustrative purposes

that the investor is not forward-looking, and that ε = 0. Then demand functions satisfy

Short-run demand: aM
g = π1 ·

eM
2 + pgeM

g + preM
r

pg
;

Long-run demand: aM
g = π1 ·

eM
2 + pgeM

g

pg
.
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The difference is due to the valuation of endowments. In the short run, changes in the

red price affect demand because wealth is marked to market. In the long run, demand is

independent of the red price because the investor was forced to divest. In general, there

are thus important dynamic considerations that differ from consumer markets, where

most purchases are generally not resold or marked to market.

5 On The Structural Interpretation of Demand Elasticities

Demand elasticities are one of the main objects of interest in industrial organization. The

reason is that a well-identified demand elasticity which can be related to, e.g., preferences

for automobiles may inform a policymaker of the quantity response to a tax policy that

raises automobile prices. In line with this view, researchers in demand-system asset pric-

ing often argue that demand elasticities are a useful diagnostic that might distinguish

their method from more classical approaches. Against this background, we now discuss

the structural interpretability of demand elasticities in financial markets.

An important difference between consumer goods and financial markets is that

portfolio choice is generally modeled, at least in part, using preferences over state-contingent

payoffs rather than asset characteristics alone. We will therefore argue that asset-level de-

mand elasticities may not be informative about preference parameters whenever multiple

(portfolios) of assets can deliver the same state-contingent payoff stream. In particular,

the structural interpretation of demand elasticities depends on the security menu, as well

as on whether there are “outside options” for an investor to pursue in response to price

changes. This in turn is linked to the general equilibrium consequences of price changes.

5.1 Elasticities and the Security Menu

To establish a clean benchmark, we first show an example where asset-level demand elas-

ticities are informative about preferences. In particular, we assume that the security menu

consists only of the full set of Arrow securities, and that investors do not exhibit tastes

over assets. Since each asset is uniquely tied to a particular state, asset-demand elas-

ticities are then informative about state-contingent valuations. In particular, consider a
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generic investor choosing Arrow security positions {a(z)}z to solve:

max
a(z)

u(c0) + β ∑
z

π(z)u(c1(z))

s.t. c0 = w−∑ p(z)a(z)

c1(z) = y(z) + a(z).

where p(z) is the price of security z and y(z) an exogenous state-contingent endowment.

If we define the marginal rate of substitution (or the state price) associated with state z

to be Λ(z) = βπ(z)u′(c1(z))/u′(c0), the first-order condition is Λ(z) = q(z). The implicit

function theorem yields an equation linking demand elasticities to preference parameters,

ε(z)Λ(z)

[
− α(c1(z))

q(z)
− α(c0)

]
=

1
a(z)

+ Λ(z)α(c0),

where α(c) is the coefficient of absolute risk aversion and ε(z) = ∂a(z)
q(z)

q(z)
a(z) is the price

elasticity of demand for Arrow security z. Thus, when the security menu is the case

of Arrow securities, suitable price instruments allow researchers to estimate preference

parameters Λ(z)α(c0) from portfolio data. With multiple price instruments, it may also

be possible to disentangle both components under mild parametric assumptions.

Next, consider the effects of changes in the security menu. To remove direct effects

on prices, we hold the set of marketable payoffs fixed. In particular, we begin with the

Arrow security menu and, for some generic state of the world z∗, introduce a new Arrow

security that also pays off only in state z∗. Denote the demand for the original security

by a0(z∗), and the demand for the new security by a1(z∗). If the Law of One Price holds,

we must have that both assets have the same initial price, p0(z∗) = p1(z∗), and so the

investor will be indifferent between holding both assets.

Proposition 6 (Elasticities with Redundant Assets) Suppose that the investor holds a posi-

tive position in both securities referencing state z∗. Now consider an exogenous increase in price

of the new security, holding all other prices fixed. Then the demand elasticity for the new security

is −∞, while the demand for consumption in state z∗ is unchanged. Hence, estimated demand

elasticities for the new security are uninformative about preference parameters.

While this example is deliberately stark, it is sufficient to highlight the critical role

of the security menu, and redundant assets, for the structural interpretability of demand
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elasticities. Outside the case of Arrow securities, moreover, investors may need to com-

bine multiple assets in certain proportions to achieve a certain consumption stream, and

asset-level demand elasticities may only have structural interpretations when multiple

assets are considered jointly. Finally, when there are redundant assets, investor quantities

may not be uniquely pinned down by optimality conditions, yet they will still affect mea-

sured elasticities. It is precisely because of this indeterminacy that classical asset pricing

has relied so extensively on no arbitrage relationships between prices.

5.2 Outside Goods

Next, we consider the role of outside options, and how they are shaped by general equilib-

rium forces. In industrial organization, it has long been recognized that the interpretation

of demand elasticities depends critically on the assumed notion of an “outside good,”

which is the alternative use of money available to a consumer that, e.g., chooses not to

buy a car (Berry and Haile, 2021). In consumer good settings, a common strategy is to

model preferences as quasi-linear, with the implicit understanding that the outside good

is a consumption bundle whose utility scales approximately linearly with wealth.

Such an approach may be less viable in financial markets, at least as long as one is

interested in general equilibrium economies. To see this, return to our baseline Lucas Tree

economy from Section 3 and assume that the equilibrium features perfect sorting, with

only Type 1 investors buying green trees and only Type 2 investors buying red trees. In

this case, Type 1’s demand function for green trees satisfies:

a1
g =

1
pg

π1

1− π1
a1

2.

Differentiating this expression with respect to the price pg yields

∂a1
g

∂pg
= − 1

(pg)2
π1

1− π1
a1

2 +
1
pg

π1

1− π1

∂a1
2

∂pg

= −
a1

g

pg
+

a1
g

a1
2

∂a1
2

∂pg
.

The first term is the own price effect that is negative; the second is the cross-demand

elasticity of good 2. As is well known, under natural assumptions, the overall response is

negative, with investors substituting away from green trees as their price increases.

27



However, this cannot be true in equilibrium for any fundamental shock that might

increase the price of green trees. Consider for example an increase in Type 1’s wealth

share ω. Our preceding analysis shows that this must lead to an increase in pg. However,

since Type 1 agents are symmetric within type and only Type 1 investors buy green trees,

market clearing ensures that a1
g = 1/2 in equilibrium. Hence the equilibrium elasticity is

zero, not negative, because there is no outside good for investors to move to. In applied

contexts, it is therefore critical to assess the degree of substitutability between “inside”

and “outside” assets. For example, corporate bonds may be a better subsitute for Treasury

bonds than equities, and the degree of substitutability may differ depending on the level

of aggregation.

6 Conclusion

We present a synthesis between classical asset pricing and recent demand-system ap-

proaches to asset pricing, using multiple methods of incorporating non-pecuniary tastes

into equilibrium models of portfolio choice. Our analysis highlights important conceptual

concerns, including the definition of no arbitrage and the law of one price, the pricing of

redundant assets, and the cardinal interpretation of taste parameters. Based on these con-

cerns, we highlight several barriers to identification of demand systems that may threaten

the validity of counterfactuals based on estimated demand systems.
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