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Abstract

We analyse default risk parameter estimation when agents can manipulate, at cost, a covariate

used in credit scoring. A quali�ed version of Goodhart�s law obtains: When a scoring model uses

coe¢ cients from clean historical data, intercept and/or slope coe¢ cients shift down subsequently,

if the coe¢ cient on the clean covariate is not zero. Conversely, if the clean covariate coe¢ cient

is zero, parameter estimates remain stable over time regardless of the models posted. We then

characterize Nash models. If the clean covariate coe¢ cient is not zero, so Goodhart�s critique

applies, intercept and/or slope coe¢ cients of any Nash model must undershoot clean data coun-

terparts, and the Nash slope coe¢ cient cannot be zero. Finally,we consider Stackelberg leader

models, showing that under some technologies it can be optimal to encourage manipulation by

posting a model with an upward biased slope.

1 Introduction

Since Altman (1968), historical relationships between accounting ratios and bankruptcy events have

been used to estimate corporate default probabilities. Since then, econometric techniques have

become increasingly sophisticated, with recent research using machine learning to predict household

and corporate defaults, e.g. Tian, Yu and Guo (2015), Tian and Yu (2017), Barboza, Kimura and

Altman (2017), Chen and Xiang (2017), Chan-Lau (2017), and Zhou (2021).

Such use of econometric models to estimate default probabilities brings them into direct con�ict

with Goodhart�s law, which states that:1

1See Goodhart (1975) and the related formal work of Lucas (1976).



Any observed statistical regularity will tend to collapse once pressure is placed upon

it for control purposes.

In particular, Fair Isaac Corporation (2018) notes that, �In markets where credit risk scoring

models are regulated and scrutinized, there is a strong requirement for the models, and the credit

decisions derived from them, to be explainable. The impact each variable has on the credit score

must be traceable (transparent), clearly explained and palatable (understandable and acceptable)

to lenders, regulators and consumers.�Faced with such models, borrowers have an obvious incentive

to game data. Indeed, echoing Goodhart�s law, Mark Zandi, chief economist at Moody�s Analytics,

expresses concern that, �The scoring models may not be telling us the same thing that they have

historically, because people are so focused on their scores and working hard to get them up, mucking

with their relationship to the underlying credit risk.� Consistent with this argument, Liu, et al.

(2010) and Caton, et al. (2011) document earnings management prior to bond �otations.

Although the problem of data manipulation in credit risk assessment is oft-noted, it is not

clear how to model it formally, to say nothing of the more important challenge of how to address

the problem econometrically. With this in mind, this paper develops an analytical framework for

assessing and addressing Goodhart�s law in the context of econometric models of credit risk. How do

we incorporate data manipulation into a formal statement of the econometrician�s program? How

does Goodhart�s law relate to the underlying technologies available to borrowers as they contemplate

costly data manipulation? What tools are available for addressing Goodhart�s law in the context of

credit risk assessment, and how well do these tools perform?

The setting considered is as follows. In the spirit of Goodhart (1975), an econometrician has

access to clean historical data drawn from a prior cohort of borrowers who did not face a default

prediction model. As shown, this clean data allows the econometrician to correctly estimate the

intercept and slope parameters (a; b) determining each agent�s latent repayment probability, F (a+

bx), with x � 0; b � 0; and F taking standard functional forms, speci�cally, linear, logistic (logit)

or normal (probit).
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Taking into account the historical parameters (a; b), the econometrician posts her preferred

default prediction model with intercept and slope parameters (e�; e�): Each agent in the future cohort
submits a manipulated covariate ex; with repayment probability computed according to F (e�+ e�ex).
In our binary setup, each agent makes a yes/no decision regarding whether to manipulate their

covariate upward by � > 0; with the manipulation cost being an i.i.d. shock. In the alternative

setup, borrowers face a quadratic manipulation cost function.

In order to illustrate Goodhart�s law, we �rst consider a naive econometrician who announces to

the future strategic borrowers that their respective repayment probabilities will be assessed according

to F (a + bex). Ex post, the econometrician tests for model instability by coming up with new

parameter estimates (b�; b�), applying OLS (linear F ) or MLE (logit/probit) to the manipulated data
generated by this cohort of strategic borrowers. Consistent with Goodhart�s law, model parameters

are indeed unstable, with (b�; b�) 6= (a; b) unless b = 0:
After illustrating Goodhart�s law, we examine alternative econometric responses, con�ning atten-

tion to logit and probit models, with the econometrician choosing the intercept and slope parameters

of her posted model to maximize the expected log-likelihood ratio. We consider �rst Nash equilib-

ria: Nash model parameters (��; ��) are optimal given the borrowers�covariates, and vice-versa.

Phrased di¤erently, Nash econometric models are immune to Goodhart�s law, with (��; ��) repre-

senting stable ML estimates for cohorts of borrowers responding to (��; ��). Historical clean data

coe¢ cients (a; b) are Nash if and only if b = 0: If b > 0; a Nash econometric model must feature

a lower intercept and/or slope than (a; b), and the Nash slope �� 6= 0. If borrowers have the bi-

nary manipulation technology and b is su¢ ciently large, there can be a Nash equilibrium in which

�� = b, all borrowers manipulate, and the intercept �� = a� b�: In this all-manipulate equilibrium,

the expected likelihood ratio reaches that attained if manipulation were impossible. Conveniently,

this �xed point would be found after performing a single round of ex post estimation on borrowers

who face the historical coe¢ cients (a; b):

Next, we analyze Stackelberg default prediction models. In contrast to Nash models, where the
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econometrician treats the distribution of covariates as given, a Stackelberg model parameterization

(���; ���) accounts for the e¤ect of the posted model on borrower incentives. We �nd Nash and

Stackelberg models are (numerically) similar if borrowers face quadratic manipulation costs. How-

ever, if borrowers have the binary manipulation technology, the Stackelberg model di¤ers markedly

from the Nash model. In particular, if b is su¢ ciently low, a Stackelberg leader econometrician

nudges borrowers toward homogeneity and low probabilities of manipulation by posting a slope

��� < b. By way of contrast, if b is su¢ ciently high, a Stackelberg leader econometrician �nds it op-

timal to nudge all borrowers toward manipulating their covariate upward by posting slope ��� > b.

If all borrowers can be induced to manipulate in this way, a simple downward adjustment of the

intercept su¢ ces to restore predictive power to its level in economies with zero manipulation.

Our paper draws much inspiration from recent work of Frankel and Kartik (2023), and to a

lesser extent Hennessy and Goodhart (2023).2 Frankel and Kartik consider a more abstract setting

with linear bene�ts, quadratic manipulation costs, and a parameterized covariance structure. Here

they show a Stackelberg principal �nds it optimal to make allocations less sensitive to the covariate.

In contrast, our Stackelberg principal sometimes �nds it optimal to increase this sensitivity under

particular manipulation technologies. Another point of contrast is that much of our analysis entails

comparative static analysis on the clean data slope b, with their model treating the special case of

b = 1: However, the primary di¤erence is that we consider a speci�c setting, credit risk prediction

via MLE, in a setting with an endogenous manipulation gain.

Another closely related paper is that of Rajan, Seru and Vig (2010). They demonstrate a comple-

mentary variation on Goodhart�s law in credit markets: An increase in securitization rates over time

will weaken lender incentives to collect soft information, implying that historical estimates of default

probabilities will undershoot prospective default probabilities. Of course one point of contrast is

that we focus on borrower moral hazard, not lender moral hazard. However, the more important

point of contrast methodologically is that we cast all of our analysis in an explicit econometric

framework, inspired by Frankel and Kartik (2023) and Hennessy and Goodhart (2023).

2Hennessy and Goodhart (2023) consider machine learning in linear settings with manipulation.

4



Our all-manipulate econometric equilibrium under binary manipulation is in the spirit of the

signal jamming equilibrium of Stein (1989). In his model, manager�s can engage in clandestine

borrowing at a cost to in�ate earnings. In equilibrium, the market infers the extent of incentive-

compatible earnings in�ation, so that stocks are priced correctly.

Eliaz and Spiegler (2019) consider a setting in which the agent is part of the training data.

By construction, they consider a setting in which incentives would seem to be aligned in that the

objective of the principal is to predict the agent�s most preferred outcome. Nevertheless, they

identify the following problem that is likely to be acute under Lasso estimation with sparsity: The

agent may have an incentive to misreport given that his report only matters in the event that the

covariate�s coe¢ cient is not zero.

Björkegren, Blumenstock and Knight (2020) consider the special case of absolute quadratic

manipulation costs demonstrating their method with Monte Carlo simulations. In addition, they

o¤er a real-world implementation in a �eld experiment in Kenya. Brückner and Sche¤ner (2011)

and Hardt et al. (2015) also analyze agents who can manipulate covariates. Brückner and Sche¤ner

consider only quadratic manipulation costs while Hardt et al. only consider costs expressible as

maxf0; g(x2)�f(x1)g for some (f; g) which includes linear manipulation costs but excludes quadratic

costs and other standard distance measures.

There is another line of research in computer science focusing on strategic manipulation of

training data, e.g. Dekel et al. (2010) and Chen et al. (2018). This literature contemplates statistical

inference combined with mechanism design, with the core idea being to identify mechanisms that

will induce truthful reporting in the training data.

The remainder of the paper is as follows. Section 2 analyzes incentives for data manipulation.

Section 3 examines Goodhart�s law in the context of linear probability models. Section 4 examines

Goodhart�s law in the context of logit and probit models. Section 5 examines potential economet-

ric remedies to the problem of manipulable data in credit risk prediction. Section 6 considers a

multivariate setup. We conclude with suggestions for future lines of research.
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2 Data Manipulation Incentives

We begin this section be describing the institutional setting in which the econometrician and borrow-

ers interact. We then show that data manipulation incentives have a number of intuitive properties.

2.1 Institutional Setting

We consider a single lender relying on model-based loan pricing, as described below. Loan amounts

are normalized at 1. The outcome y is a binary random variable, with y = 1 denoting debt repayment

and y = 0 denoting default. In the event of default, the lender recovers l, where 0 � l < 1: The

risk-free rate is r � 0:

The true covariate x � 0 is a random variable with atomless cumulative distribution function

H and probability density function h. The conditional expectation of y given x, or equivalently the

probability of debt repayment conditional upon x, is of known functional form:

E[yjx] = Pr[y = 1jx] = F (a+ bx); (1)

where b � 0, and F is a known cumulative distribution function. That is, the conditional expectation

function falls into a known parametric family. The argument, call it z; to which the c.d.f. F is applied

is denoted the credit score, e.g. a borrower�s true credit score is z = a+ bx.

To illustrate, suppose x denotes the log of the ratio of �rm asset value (V ) to debt face value

maturing at time T . In the log-normal economy considered by Merton (1974), the debt repayment

probability takes the form:

Pr[y = 1jx] = N

24(�V � 1
2�

2
V )T

�V
p
T

=a

+

�
1

�V
p
T

�
=b

x

35 : (2)

In the spirit of Goodhart (1975), we assume the econometrician has access to clean training data

consisting of (y; x) pairs collected from some historical cohort�a cohort that had no incentive to

manipulate since their data was not being used in setting interest rates.3 The question pondered

3This is to �x ideas and setting. Alternatively, one can simply assume the econometrician knows (a; b):

6



by Goodhart is the extent to which statistical regularities gleaned from historical data will tend to

break down if those regularities are used in allocating resources, with our speci�c interest being the

pricing of credit.

The mandate of the lender is to make loans to future borrowers subject to an institutional

constraint that the model-implied expected return is equal to the risk-free rate. More speci�cally,

letting hats denoted predicted values, the interest rate � on any future loan must satisfy:

1 + r = cPr[y = 1](1 + �) + h1�cPr[y = 1]i l (3)

) � = l +
1 + r � lcPr[y = 1] � 1:

The underlying friction in our parable economy is that the lender cannot observe the true

covariate values for future borrowers. Rather, the lender observes a reported covariate ex that
is potentially manipulated upward from x. For ease of exposition, ex is labeled the manipulated
covariate, although ex = x is a potential outcome in some cases, as described below.

Data manipulation is costly. We consider that manipulation costs take one of two forms. In

the binary manipulation setup, borrowers choose whether to manipulate or not, with manipulation

being of �xed size � > 0: Here manipulation comes at an idiosyncratic cost c; with c being a privately

observed random variable having an atomless di¤erentiable cumulative distribution G with g � G0

being strictly positive on domain [0; cmax]: In the quadratic manipulation cost setup, the borrower�s

cost of manipulation is cm2=2 where m � ex�x, with c > 0 being a privately observed i.i.d. random
variable with cumulative distribution � and density function 
: Noteworthy is the fact that noise

in c, in addition to latent x, will give rise to two dimensions of private information, complicating

inference and default prediction.

The econometrician�s default prediction model (DPM) states how ex is mapped to an assessed
repayment probability:

DPM: cPr[y = 1jex] � F (e�+ e�ex): (4)

Within this setting, we consider two classes of strategic agents: borrowers and an econometrician.

The task of the econometrician is to specify the coe¢ cients (e�; e�) of the posted econometric model,
7



perhaps relying on parameter estimates derived from the clean historical data (y; x): Borrowers

respond to the posted DPM by reporting a covariate ex:4 Since b � 0, we con�ne attention to posted
econometric models featuring e� � 0 which implies optimal manipulation is non-negative (m � 0).

2.2 Optimal Data Manipulation

The objective of borrowers is to minimize the sum of debt service plus data manipulation costs. With

this in mind, consider �rst determination of debt service. Substituting equation (4) into equation

(3), the model-implied interest rate schedule is:

�(m;x; e�; e�) = l + 1 + r � l
F [e�+ e�(x+m)]

� bF
� 1: (5)

For tractability, let


(z) � [F (z)]�1 ) �(m;x; e�; e�) = l + (1 + r � l)
[e�+ e�(x+m)]� 1: (6)

The following lemma, relegated to the appendix, establishes some useful properties of 
 for three

standard classes of default prediction models: linear probability, logit, and probit.

Lemma 1. Let 
(z) � [F (z)]�1 where F (z) � ez(1 + ez)�1 or F (z) � N (z): Then 
 is strictly

decreasing and strictly convex on <. If F (z) � minf1;maxf0; zgg; then 
 is strictly decreasing and

strictly convex on (0; 1):

Consider �rst the binary manipulation setup and let 	 denote the reduction in the interest rate

that results from data manipulation of size �, when the posted DPM features parameters (e�; e�).
We have:

	(�; x; e�; e�) � �(0; x; e�; e�)� �(�; x; e�; e�) (7)

= (1 + r � l)
�

(e�+ e�x)� 
(e�+ e�x+ e��)� :

4Of course, in Nash equilibrium, the econometrician and borrowers move simultaneously.
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A borrower will manipulate if and only if c � 	: Thus, the implied probability of data manipulation

is given by:

� � G
h
	(�; x; e�; e�)i = G h(1 + r � l)�
(e�+ e�x)� 
(e�+ e�x+ e��)�i : (8)

We have the following comparative statics:

@�

@x
= e�(1 + r � l) h
0(e�+ e�x)� 
0(e�+ e�x+ e��)i g h	(�; x; e�; e�)i (9)

@�

@e� = (1 + r � l)
h

0(e�+ e�x)� 
0(e�+ e�x+ e��)i g h	(�; x; e�; e�)i

@�

@e� = (1 + r � l)

264 x
�

0(e�+ e�x)� 
0(e�+ e�x+ e��)�

��
0(e�+ e�x+ e��)
375 g h	(�; x; e�; e�)i :

When 
 is decreasing and convex, as is the case for standard functions F (Lemma 1), the �rst two

comparative statics immediately above are negative: Manipulation probability is decreasing in both

e� and x: Intuitively, the incentive to manipulate decreases with a borrower�s baseline credit score
z = e�+ e�x. More formally, this baseline e¤ect can be understood as arising from the fact that the

interest rate � (equation (5)) is a decreasing convex function of the imputed repayment probability

bF . Starting at a higher initial bF ; incremental increases in bF have a smaller e¤ect on the interest

rate.

Returning to equation (9), the e¤ect of an increase in e� on manipulation probability is ambiguous.
This is because two competing e¤ects are operative. Consider, if x = 0; the only e¤ect present is that

with higher e�, each unit of manipulation has a larger e¤ect on the credit score since @z=@m = e�.
This e¤ect encourages manipulation. However, for borrowers with x > 0; an increase in e� raises the
baseline credit score, which discourages manipulation.

Consider next borrower incentives for data manipulation when they instead face quadratic costs.

Optimal manipulation satis�es:

m�(x; e�; e�; c) 2 argmin
m

1

2
cm2 + �(m;x; e�; e�):

The �rst-order condition here is that the borrower equates the marginal reduction in her interest

9



rate with marginal manipulation costs, or:

cm� + �m(m
�; x; e�; e�) = 0) cm� + (1 + r � l)e�
0[e�+ e�(x+m�)] = 0: (10)

If 
 is indeed convex (Lemma 1), the second-order condition for a local minimum will be satis�ed

with

c+ �mm(m
�; x; e�; e�) = c+ (1 + r � l)e�2
00[e�+ e�(x+m)] > 0:

Applying the implicit function theorem to the �rst-order condition, we obtain the following com-

parative statics:

@m�

@x
= �(1 + r � l)

e�2
00[e�+ e�(x+m�)]

c+ �mm(m�; x; e�; e�)
@m�

@e� = �(1 + r � l)
e�
00[e�+ e�(x+m�)]

c+ �mm(m�; x; e�; e�)
@m�

@e� = �
(1 + r � l)

he�(x+m�)
00(e�+ e�(x+m�)) + 
0(e�+ e�(x+m�))
i

c+ �mm(m�; x; e�; e�)
@m�

@c
= � m�

c+ �mm(m�; x; e�; e�) :
These comparative statics results are analogous to those obtained above in the binary setup. In

particular, let us consider settings with 
 convex. Then the �rst two comparative statics are

negative: Manipulation is decreasing in the true covariate x and the posted model intercept e�.
The e¤ect of an increase in e� on manipulation is ambiguous. On one hand, with higher e�; a

given manipulation increment has a larger e¤ect on the credit score, since @z=@m = e�. However,
starting at a given ex > 0; an increase in e� raises the imputed repayment probability bF . This makes
the interest rate (equation (5)) less sensitive to further increases in bF , discouraging manipulation
at the margin.

The following proposition summarizes results from this section.

Proposition 1. Suppose the posted model features slope coe¢ cient e� > 0. If F (z) � ez(1 + ez)�1
or F (z) � N (z); (the probability of) manipulation is strictly decreasing in the true covariate x, as

well as the posted intercept e�: If F (z) � minf1;maxf0; zgg; (the probability of) manipulation is

weakly decreasing in x and e�: The e¤ect of an increase in e� is ambiguous.
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3 Goodhart�s Law in Linear Probability Models

This section analyzes whether and how Goodhart�s Law would manifest itself if the true data

generating process was the linear probability model (LPM), with

E[yjx] = Pr[y = 1jx] = a+ bx: (11)

Anticipating, the LPM is an attractive starting point since many arguments can be phrased in terms

of intuitive objects, such as covariances. Moreover, as we show, many results for the LPM carry

over to settings in which F is non-linear, although arguments and proofs di¤er.

To begin, consider the mean squared prediction error (MSPE) generated when a univariate

function �(�) is applied to the measured covariate ex. We have:5
E
�
(y � �(ex))2� = E

�
[(y � E(yjex)) + (E(yjex)� �(ex))]2	 (12)

= Ef(y � E(yjex))2 + (E(yjex)� �(ex))2 + 2(y � E(yjex))(E(yjex)� �(ex))]g
= Ef(y � E(yjex))2g+ E �(E(yjex)� �(ex))2�+ 2E [(y � E(yjex))E(yjex)]� 2E [(y � E(yjex))�(ex)]
= E

h
[E(yjex)� y]2i+ E h[�(ex)� E(yjex)]2i :

The �nal line above results from the �nal terms in the penultimate line being equal to zero due to

orthogonality of the prediction error y � E(yjex) to any univariate function of ex:
Equation (12) shows the MSPE obtained by applying a default prediction model (function) �

to a measured covariate ex can be viewed as consisting of two components. The �rst component is
the natural loss arising from using the speci�c covariate ex as a basis for prediction. The second
component results from any gap between the model � and the conditional expectation function.

It follows that, if an econometrician were to treat the distribution of ex as �xed, as they would in
Nash equilibrium, the optimal function � would be the conditional expectation function. However,

a Stackelberg leader econometrician would want to account for the e¤ect of � on the distribution of

observed covariates.
5Frankel and Kartik (2023) present analogous expressions for their setup.
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Suppose now that borrowers respond optimally to a posted prediction model �, generating a

covariate report ex�: From equation (12) it follows:

E
�
(y � �(ex�))2� = E h[E(yjex�)� y]2i+ E h[�(ex�)� E(yjex�)]2i : (13)

The preceding decomposition stresses an important point. Changes in the default prediction model

have a direct e¤ect on the loss metric, as captured by the second term, the distance between the

prediction model � and the conditional expectation function. However, there is a second indirect

e¤ect attributable to the fact that changes in the posted model � will change the observed data and

their natural predictive power, as captured by the �rst term.

As an extreme case, suppose data manipulation is not possible, with � being a¢ ne, �(x) = �+�x:

We then have:

E
h
(y � �� �x)2

i
= E

h
[E(yjx)� y]2

i
+ E

h
[(�+ �x)� (a+ bx)]2

i
: (14)

Notice, if data manipulation is impossible, there is no incentive-based tradeo¤ in selecting the

parameters (�; �); since the �rst term is a �xed quantity representing natural loss coming from

predicting y based upon x. Consequently, here MSPE is minimized by setting (�; �) = (a; b). We

have the following remark, which is also shown (below) to apply to ML estimators in our parable

economy.

Remark 1. In an economy without data manipulation, the econometric procedure (OLS/MLE)

recovers the structural parameters (a; b) and each loan is correctly priced if interest rates are set

according to equation (5).

Consider now the consequences of data manipulation. Recall ex denotes the covariate that would
be reported by a borrower who faced a model with posted coe¢ cients (e�; e�), hence the common
tilde superscript. Suppose that, ex post, an econometrician were to collect data on the realized

(y; ex) pairs, and then estimate a linear prediction model with coe¢ cients (�; �): Noting that y = y2,
with y and ex being independent conditional upon x, the resulting MSPE can be expressed as:

E
h
(y � �� �ex)2i = �2 + (1� 2�)E[y] + 2��E [ex] + �2E[ex2]� 2�EfE [yjx]E [exjx]g: (15)
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Applying the law of iterated expectations to the �nal term in the preceding equation, we �nd:

EfE [yjx]E [exjx]g = E f(a+ bx)E [exjx]g (16)

= aE [ex] + bE [xex] :
Substituting the preceding expression into equation (15), we �nd that the MSPE can be expressed

parametrically as follows:

MSPE( �; �|{z}
Candidate

; e�; e�|{z}
Posted

; a; b|{z}
DGP

) = �2+(1�2�)[a+bE(x)]+2(��a)�E [ex]+�2E[ex2]�2�bE [xex] : (17)
Care must be taken in interpreting the preceding equation since the probability distribution of the

ex varies with the parameters of the posted model (e�; e�).
An econometrician given ex post access to realized (y; ex) pairs would obtain OLS coe¢ cients

(b�ols; b�ols) that satisfy:
(b�ols; b�ols) 2 argmin

�;�
MSPE(�; �; e�; e�; a; b): (18)

The preceding objective function is strictly concave, and the �rst-order conditions (FOCs below)

are:

0 = 2b�� 2[a+ bE(x)] + 2b�E[ex] (19)

0 = 2(b�� a)E[ex] + 2b�E �ex2�� 2bE[xex]:
Throughout the analysis, let b�swols denote the OLS coe¢ cient arising from a regression of s on w, for

arbitrary (s; w): From the preceding FOCs we have:

b�ols = a+ bE[x]� b�E[ex]: (20)

b�ols = b� E[xex]� E[x]E[ex]
E [ex2]� (E[ex])2| {z }

�b�xexols
:

Inspection of equation (20) leads to the following proposition.

Proposition 2. Consider a linear probability model for default and suppose the true covariate x

has no explanatory power in predicting default in clean historical data (b = 0). Then regardless of
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the parameters (e�; e�) of the model posted, the OLS/MSPE coe¢ cient estimates derived from the

resulting manipulated data will be (b�ols; b�ols) = (a; b) = (a; 0):
Proposition 2 informs us that b = 0) b� = 0; regardless of the parameters of the posted model.

Phrased colloquially, the econometrician cannot get something from nothing. Intuitively, if b = 0;

the random variables (x; c) privately observed by borrowers, as well as their incentive compatible

manipulation m, are uninformative about default risk. The proposition also informs us that some

statistical regularities (b = 0) observed in clean historical data will remain robust over time, even if

borrowers are induced to manipulate by a posted model featuring e� > 0.
Let us now consider Goodhart�s law when the econometrician utilizes a linear probability model.

In particular, suppose the econometrician recovers the parameters (a; b) using clean training data,

and then naively informs future strategic borrowers that repayment probabilities will be computed as

F (a+bex): Finally, let us suppose the econometrician re-estimates the intercept and slope parameters
ex post using OLS (or MLE in the context of logit and probit models) using the resulting manipulated

data drawn from this strategic cohort. Let us dub the resulting estimates, Goodhart estimates, since

this is the thought experiment Goodhart contemplated (but certainly not an econometric practice

he advocated). Formally, in the present context we have

Goodhart Estimates: (b�ols; b�ols) 2 argmin
�;�

MSPE( �; �|{z}
Candidate

; a; b|{z}
Posted

; a; b|{z}
Historical

): (21)

From Proposition 2 it follows that if b = 0; the Goodhart estimates will be equal (a; 0): That

is, if b = 0, coe¢ cient estimates will remain stable over time. In fact, this claim holds a fortiori

since posting a model with slope b = 0 induces zero manipulation, so the Goodhart estimate must

be the equal to the (true) coe¢ cients that obtain in clean historical data. Conversely, we know

that if the econometrician posts a model with a positive slope, there will be a positive measure of

manipulation. That is: e� = b > 0) E [ex] > E [x] : (22)

Combining the preceding equation with equation (20), we have the following proposition.
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Proposition 3. Consider a linear probability model for default, with the posted model featuring

intercept and slope parameters set at their value (a; b) under clean historical data. The OLS/MSPE

estimates derived from the resulting data will remain equal to (a; b) if and only if the unmanipulated

covariate has no explanatory power (b = 0): If the unmanipulated covariate has explanatory power

(b > 0); then b�ols < a and/or b�ols < b:
Before proceeding to numerical analysis, it would be useful to obtain further analytical insight

about the behavior of the Goodhart estimates that arise when b > 0: To this end, consider the

extreme case of a setting where ex and x are perfectly correlated. We know:6
�exx = 1) b�ols = bb�exxols : (23)

Next recall that ex � x +m; with the stochastic image of m decreasing in x (Proposition 1). This

implies b�exxols � 1: (24)

Taken together, the two preceding equations suggest that the Goodhart slope will tend to overshoot

b in settings with high correlation between ex and x:When the Goodhart slope does indeed overshoot
b, Proposition 3 informs us that the estimated intercept must adjust downwards (sharply) to counter

the universal ratings in�ation that would otherwise result, since b�ex > bx for all borrowers.
Further insight into coe¢ cient behavior can be gained through numerical analysis. In terms of

calibration our objective is to make results comparable across the di¤erent pair-wise combinations

of model for default prediction (linear versus logit) and manipulation technology (binary versus

quadratic cost). To achieve this goal, the calibration must be done for each combination, thus

giving four distinct sets of parameter choices. For convenience, we set the risk-free rate to zero,

r = 0 and the return in the low state at l = 0:5. The remaining parameter values depend upon the

manipulation technology.

For binary manipulation decisions, we set � = 0:2, and a probability distribution of manipulation

cost, G, uniform in [0; cmax], where cmax = 0:03 is set to ensure that at x = xmax manipulation

6Using �exx = 1) b�exxols = 1=b�xexols.
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probability is lower than 1. For manipulation based on a quadratic cost function, we assume a

deterministic cost parameter c = 1.

For the linear prediction model, the probability distribution of x is uniform on [0; 1:8], which

ensures a non-negative probability for all x. For the DGP, we set a = 0:5, and allow b to go up to

a maximum value b = 0:25. This ensures that the survival probabilities are similar, for the same

x, for the linear and the logit model. The choice of maximum x is the same under the quadratic

cost technology, because at b = 0:25 the average m� � �. In this sense, the models feature similar

manipulation scales. For the logit prediction model of credit risk, x has uniform distribution on

[0; 1], with a = 0.

Figures 1-4 plot outputs associated with Goodhart estimates (equation (21)) that obtain for

alternative values of the clean historical data slope coe¢ cient b:

Figure 1 considers the binary manipulation setup. A few points are worth noting. First, con-

sistent with Proposition 2, the estimated intercept always undershoots the true intercept. In fact,

the estimated intercept declines monotonically with the posted model�s slope e� = b; countering the
increase in manipulation. By way of contrast, the ratio of the �tted OLS slope coe¢ cient to b is

non-monotonic, sometimes undershooting b and sometimes overshooting b:

Finally, and perhaps most interesting, the bottom panel of Figure 1 shows the gap between the

respective MSPE under manipulated versus the clean data MSPE benchmark is non-monotonic in

b. To understand this, note that data manipulation itself does not necessarily increase the MSPE.

Rather, it is heterogeneity in manipulation across borrowers that increases the MSPE here. As the

posted b increases su¢ ciently, the behavior of borrowers becomes increasingly similar, with most

borrowers manipulating by � with probability 1, as illustrated in Figure 2. This causes the MSPE

to fall with b in some regions.

Figures 3 and 4 present analogs for the quadratic manipulation cost setup. Here the estimated

OLS slope coe¢ cient overshoots the historical slope b for all b > 0: To understand this, we note that,

at least for the parameter values considered, the correlation between x and ex is close to 1. Therefore,
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equations (24) and (23) suggest overshooting will be present. To counter the e¤ect of ever-increasing

manipulation, the estimated intercept decreases in the posted model slope b: In contrast with the

binary manipulation setup, we see in Figure 4 the MSPE increases monotonically in b; due to the

increase in incentive compatible manipulation, which here only serves to confound inference.

4 Manipulable Data in Logit and Probit Models

The remainder of the paper assumes the true data generating process is given by equation (1), with

F being the logistic or normal distribution, as in logit and probit models.

4.1 Maximum Likelihood Estimation

Consider �rst an empirical likelihood function L and corresponding log likelihood L in an economy

without data manipulation:

L �
IY
i=1

(F (�+ �xi))
yi(1� F (�+ �xi))1�yi (25)

L �
IX
i=1

yi ln(F (�+ �xi)) + (1� yi) ln(1� F (�+ �xi)): (26)

Using the law of iterated expectations, an expected log likelihood function for an arbitrarily large

i.i.d. sample can be computed as:

1

I
E [E(Ljx)] =

1

I

Z
X

"
E

 
IX
i=1

yi lnF (�+ �xi) + (1� yi) ln(1� F (�+ �xi))jx
!#

h(x)dx (27)

=
1

I

Z
X

"
IX
i=1

E fyi lnF (�+ �xi) + (1� yi) ln(1� F (�+ �xi))jxg
#
h(x)dx

=

Z
X

flnF (�+ �x)E(yjx) + ln(1� F (�+ �x))[1� E(yjx)]gh(x)dx:

Substituting the conditional expectation function into the preceding equation, we obtain the follow-

ing expected log likelihood function for economies without data manipulation:

L =
Z
X

fF (a+ bx) lnF (�+ �x) + [1� F (a+ bx)] ln[1� F (�+ �x)]gh(x)dx: (28)
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Consider next the maximizer of the preceding expected log likelihood function. The MLE inter-

cept and slope (b�; b�) satisfy the following FOCs:Z
X

"
F (a+ bx)

F (b�+ b�x) � 1� F (a+ bx)
1� F (b�+ b�x)

#
f(b�+ b�x)h(x)dx = 0 (29)

Z
X

"
F (a+ bx)

F (b�+ b�x) � 1� F (a+ bx)
1� F (b�+ b�x)

#
xf(b�+ b�x)h(x)dx = 0:

Note, the preceding FOCs are satis�ed at (b�; b�) = (a; b): That is, in the absence of data manipu-
lation, the expected log likelihood is maximized by utilizing an econometric model parameterized

at the true coe¢ cients.7 Phrased di¤erently, given an in�nite sample of clean training data, the

econometrician can use MLE to recover the deep structural parameters determining credit risk and

each individual loan can be priced correctly (Remark 1).

Consider instead the expected log likelihood function given manipulated covariates ex that emerge
in response to posted model parameters (e�; e�). Applying the law of iterated expectations we have:8
1

I
E [E(Ljx)] =

1

I

Z
X

"
IX
i=1

E [yi ln(F (�+ �exi)) + (1� yi) ln(1� F (�+ �exi))jx]#h(x)dx (30)

=

Z
X

fE [y ln(F (�+ �ex)) + (1� y) ln(1� F (�+ �ex))jx]gh(x)dx
=

Z
X

fE(yjx)E[ln(F (�+ �ex))jx] + (1� E(yjx))E[ln(1� F (�+ �ex))jx]gh(x)dx
=

Z
X

fF (a+ bx)E[ln(F (�+ �ex))jx] + (1� F (a+ bx))E[ln(1� F (�+ �ex))jx]gh(x)dx:
Recall, in the binary setup, ex 2 fx; x+�g: Therefore, equation (30) implies that here the expected

7See Conni¤e (1987) for a related discussion of the merits of MLE.
8Note that conditional upon x; m and ex are uninformative about y:
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log likelihood function is:

L( �; �|{z}
Candidate

; e�; e�|{z}
Posted

; a; b|{z}
DGP

) =

Z
X

2666666664

F (a+ bx)[1�G(	(�; x; e�; e�))] lnF (�+ �x)
+F (a+ bx)G(	(�; x; e�; e�)) lnF (�+ �x+ ��)

+[1� F (a+ bx)][1�G(	(�; x; e�; e�))] ln[1� F (�+ �x)]
+[1� F (a+ bx)]G(	(�; x; e�; e�)) ln[1� F (�+ �x+ ��)]

3777777775
h(x)dx:

(31)

For borrowers facing quadratic manipulation costs, optimal manipulation takes the formm(x; e�; e�; c).
Substituting this into equation (30), we obtain the following expected log likelihood function:

L(�; �; e�; e�; a; b) = Z
C

Z
X

264 F (a+ bx) ln[F (�+ �x+ �m(x; e�; e�; c))]
+[1� F (a+ bx)] ln[1� F (�+ �x+ �m(x; e�; e�; c))]

375h(x)
(c)dxdc:
(32)

With the preceding two objective functions in mind, let us de�ne the MLE estimator (b�; b�) for
an economy with true structural parameters (a; b), with data being generated by borrowers who

face the posted model (e�; e�). We have:
MLE : (b�; b�) 2 argmax

�;�
L( �; �|{z}
Candidate

; e�; e�|{z}
Posted

; a; b|{z}
DGP

): (33)

Di¤erentiating equation (31), we have the following FOCs for intercept and slope in the binary

manipulation setup:

L1(b�; b�; e�; e�; a; b) =

Z
X

264
h
F (a+bx)

F (b�+b�x) � 1�F (a+bx)
1�F (b�+b�x)

i
[1�G(	(�; x; e�; e�))]f(b�+ b�x)

+
h

F (a+bx)

F (b�+b�x+b��) � 1�F (a+bx)
1�F (b�+b�x+b��)

i
G(	(�; x; e�; e�))f(b�+ b�x+ b��)

375h(x)dx = 0 (34)

L2(b�; b�; e�; e�; a; b) =

Z
X

264
h
F (a+bx)

F (b�+b�x) � 1�F (a+bx)
1�F (b�+b�x)

i
[1�G(	(�; x; e�; e�))]f(b�+ b�x)x

+
h

F (a+bx)

F (b�+b�x+b��) � 1�F (a+bx)
1�F (b�+b�x+b��)

i
G(	(�; x; e�; e�))f(b�+ b�x+ b��)(x+ �)

375h(x)dx = 0:
Notice the FOCs immediately above are similar to those arising when manipulation is impossible

(equation (29)), but now at each point x the econometrician weights the manipulated covariate

report x+ � by the probability of manipulation at that point.
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Di¤erentiating equation (32) we have the following FOCs for the intercept and slope in the

quadratic manipulation cost setup:

L1(b�; b�; e�; e�; a; b) =

Z
C

Z
X

264 F (a+bx)

F [b�+b�x+b�m(x;e�;e�;c)]
� 1�F (a+bx)
1�F [b�+b�x+b�m(x;e�;e�;c)]

375 f [b�+ b�x+ b�m(x; e�; e�; c)]h(x)
(c)dxdc = 0 (35)

L2(b�; b�; e�; e�; a; b) =

Z
C

Z
X

264 F (a+bx)

F [b�+b�x+b�m(x;e�;e�;c)]
� 1�F (a+bx)
1�F [b�+b�x+b�m(x;e�;e�;c)]

375 (x+m)f [b�+ b�x+ b�m(x; e�; e�; c)]h(x)
(c)dxdc = 0:
Notice the FOCs immediately above are identical in form to those arising when manipulation is

impossible (equation (29)), but with the manipulated covariate ex taking the place of x:
In light of the preceding FOCs, it is useful to consider the special case in which b = 0: Note,

regardless of the parameters of the posted model, (e�; e�), MLE performed on the manipulated data
will return the true coe¢ cients (a; 0), with

L1(a; 0; e�; e�; a; 0) = 0 (36)

L2(a; 0; e�; e�; a; 0) = 0:

Thus, we have the analog of Proposition 2, but now in the context of MLE estimation.

Proposition 4. Suppose the true covariate x has no explanatory power in predicting default in

clean historical data (b = 0). Then regardless of the parameters (e�; e�) of the model posted, the MLE
coe¢ cient estimates derived from the resulting manipulated data will be (b�; b�) = (a; b) = (a; 0):
4.2 Goodhart�s Law in Logit and Probit Models

To illustrate how Goodhart�s law would manifest itself if logit or probit is employed, suppose as

above that the econometrician recovers the deep parameters (a; b) using clean historical training

data. Suppose also that, in light of Remark 1, the lender decides that, for the next cohort of

borrowers, it will set interest rates according to (5), with the posted default prediction model

coe¢ cients set at (e�; e�) = (a; b). Estimating on the resulting manipulated data, the econometrician
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would obtain:

Goodhart Estimates = (b�; b�) 2 argmax
�;�

L(�; �; a; b|{z}
Posted

; a; b|{z}
Historical

): (37)

Parameter instability of the sort suggested by Goodhart (1975) is easily shown if the clean

covariate has predictive power (b > 0). In particular, suppose b > 0 and consider any candidate

coe¢ cients (�; �) such that � � a and � � b > 0: For the respective cases of binary manipulation

and quadratic manipulation costs, the FOCs cannot be satis�ed, with

L1(�; �; a; b; a; b) =

Z
X

264
h
F (a+bx)
F (�+�x) �

1�F (a+bx)
1�F (�+�x)

i
[1�G(	(�; x; a; b))]f(�+ �x)

+
h

F (a+bx)
F (�+�x+��) �

1�F (a+bx)
1�F (�+�x+��)

i
G(	(�; x; a; b))f(�+ �x+ ��)

375h(x)dx < 0
L1(�; �; a; b; a; b) =

Z
C

Z
X

264 F (a+bx)
F [�+�x+�m(x;a;b;c)]

� 1�F (a+bx)
1�F [�+�x+�m(x;a;b;c)]

375 f [�+ �x+ b�m(x; a; b; c)]h(x)
(c)dxdc < 0:
The preceding two inequalities, along with Proposition 4, establishes the following proposition,

the MLE analog of Proposition 3.

Proposition 5. Consider a logit/probit model for default, with the posted model featuring intercept

and slope parameters set at their value (a; b) under clean historical data. The MLE estimates (b�; b�)
derived from the resulting data will remain equal to (a; b) if and only if the unmanipulated covariate

has no explanatory power (b = 0): If the unmanipulated covariate has explanatory power (b > 0);

then b� < a and/or b� < b:
The next section, detailing potential econometric responses to Goodhart�s law, will provide

additional formal results. However, before proceeding to this analysis, it will be useful to get a sense

of the consequences of Goodhart�s law by way of numerical analysis.

Figures 5 and 6 consider Goodhart estimates (37) in the context logit estimation when borrowers

have the binary manipulation technology.9 See Figures 1 and 2 for analogs in the context of linear

probability models. Consistent with Proposition 5, for all b > 0 there is always some amount of

undershooting, primarily in the estimated intercept, in order to counter the e¤ect of manipulation.

9Analogous �gures for probit are virtually identical.

21



The estimated slope coe¢ cient undershoots and then overshoots the historical slope b, as was the

case for OLS. Finally, the bottom panel of Figure 6 shows that once again, the performance target

is non-monotone in b. Apparently, in the binary manipulation setup, increases in b can bring about

increases in the likelihood function arising when ex post estimation is performed on manipulated

data pairs (y; ex) that arise in response to posted models parameterized according to historical clean
data estimates (a; b):

Figures 7 and 8 consider Goodhart estimates in the context of logit estimation when borrowers

face quadratic manipulation costs. These �gures mirror the numerical results for the OLS setup

contained in Figures 3 and 4. In particular, we again see overshooting of the historical slope coe¢ -

cient, with the intercept term decreasing in b in order to counter the e¤ect of higher manipulation.

The net e¤ect is a steady decline in the likelihood ratio when ex post estimation is performed on

manipulated data pairs (y; ex).
5 Econometric Responses

Having illustrated how Goodhart�s law will manifest itself in logit and probit estimation, this section

examines potential econometric remedies. The �rst subsection considers Nash econometric responses

and the second subsection considers Stackelberg econometric responses.

5.1 Nash Default Prediction

Proposition 5 shows that if the true covariate has explanatory power (b > 0) there will be inconsis-

tency between a posted econometric model obtained from clean historical covariates and the MLE

estimates that would be obtained if ex post estimation was then performed on the manipulated

covariates generated by borrowers facing the (a; b) model. This is the sort of parameter instability

contemplated by Goodhart.
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By way of contrast, a �xed point model (��; ��) is internally consistent in that:

(��; ��) 2 argmax
�;�

L( �; �|{z}
Candidate

;��; ��| {z }
Posted

; a; b|{z}
DGP

): (38)

That is, a �xed point is an econometric model that maximizes the expected log likelihood given

the distribution of manipulated covariates that would be generated by borrowers responding to that

model. Phrased di¤erently, a �xed point constitutes the Nash model of a game in which borrowers

submit covariates, with the econometrician making a simultaneous choice of intercept and slope

coe¢ cients.

Di¤erentiating equation (31), we have the following FOCs for the Nash model intercept and

slope in the binary manipulation setting:

0 = L1(��; ��;��; ��; a; b) (39)

=

Z
X

264
h
F (a+bx)
F (��+��x) �

1�F (a+bx)
1�F (��+��x)

i
[1�G(	(�; x; ��; ��))]f(�� + ��x)

+
h

F (a+bx)
F (��+��x+���) �

1�F (a+bx)
1�F (��+��x+���)

i
G(	(�; x; ��; ��))f(�� + ��x+ ���)

375h(x)dx
0 = L2(��; ��;��; ��; a; b)

=

Z
X

264
h
F (a+bx)
F (��+��x) �

1�F (a+bx)
1�F (��+��x)

i
[1�G(	(�; x; ��; ��))]f(�� + ��x)x

+
h

F (a+bx)
F (��+��x+���) �

1�F (a+bx)
1�F (��+��x+���)

i
G(	(�; x; ��; ��))f(�� + ��x+ ���)(x+ �)

375h(x)dx:
Di¤erentiating equation (32) we have the following FOCs for the intercept and slope of a Nash

model when borrowers face quadratic manipulation costs:

0 = L1(��; ��;��; ��; a; b) (40)

=

Z
C

Z
X

264 F (a+bx)
F [��+��x+��m(x;��;��;c)]

� 1�F (a+bx)
1�F [��+��x+��m(x;��;��;c)]

375 f [�� + ��x+ ��m(x; ��; ��; c)]h(x)
(c)dxdc
0 = L2(��; ��;��; ��; a; b)

=

Z
C

Z
X

264 F (a+bx)
F [��+��x+��m(x;��;��;c)]

� 1�F (a+bx)
1�F [��+��x+��m(x;��;��;c)]

375 [x+m(x; ��; ��; c)]f [�� + ��x+ ��m(x; ��; ��; c)]h(x)
(c)dxdc:
From these FOCs, we obtain the following propositions.

Proposition 6. A posted econometric model with intercept and slope parameters (a; b) (derived

from clean historical data) represents an MLE �xed point if and only if the unmanipulated covariate
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has no explanatory power (b = 0): If the unmanipulated covariate has explanatory power (b > 0);

any �xed point model (��; ��) features �� < a and/or �� < b:

Consider �rst the su¢ ciency component of the �rst stated claim. If b = 0; then posting (e�; e�) =
(a; b) results in zero manipulation. And we know that here

ex = x) (b�; b�) = (a; b) = (a; 0) � (e�; e�): (41)

Since the necessity component of the �rst stated claim follows from the second stated claim, we need

only establish that claim. To this end, consider b > 0; and note that the FOCs immediately above

cannot be satis�ed if the bracketed term is negative for all x. That is, from the FOCs it follows

that:

�� � b > 0) �� < a (42)

�� � a) �� < b:

Intuitively, since borrowers manipulate their covariates upwards, an MLE estimator must respond

by shifting down the intercept and/or slope.

The following proposition is also easily veri�ed.

Proposition 7. If the unmanipulated covariate has explanatory power, any MLE �xed point will

assign explanatory power to the manipulated covariate.

To prove the preceding proposition, consider b > 0 but suppose to the contrary that there exists

a �xed point model featuring �� = 0. Posting �� = 0 results in zero manipulation, but with ex = x
the MLE estimate is b� = b > 0; contradicting the �xed point claim.
5.2 Fixed Point Convergence

Proposition 6 is informative about the number of iterations necessary for �xed-point convergence

when the econometrician has adaptive expectations. In particular, consider an econometrician who

behaves adaptively in the sense of posting to the current cohort of borrowers the coe¢ cients that
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emerged from estimation within the prior cohort data, with the �rst round of estimation being on

clean historical data. Proposition 6 implies that if b = 0; convergence is immediate: All estimation

rounds result in the same estimates (a; 0) as those obtained from the clean historical data cohort.

Suppose next b > 0. Proposition 6 informs us that here the Goodhart estimates (b�; b�) that
result from estimating within the �rst strategic borrower cohort, who faced posted parameters

(a; b), will necessarily di¤er from (a; b): Continuing with the adaptive iteration, if the econometrician

were to post before the second strategic cohort the Goodhart estimates (b�; b�) obtained from the

�rst, one would expect di¤erent coe¢ cients to emerge. After all, the �rst strategic cohort faced

parameters (a; b) and the second will face parameters (b�; b�) 6= (a; b), with the inequality following
from Proposition 5. Phrased di¤erently one does not generally expect the Goodhart estimates to

be a �xed point since this would imply that two distinct pairs of posted coe¢ cients give rise to

identical ex post estimates:

(a; b) ) (b�; b�) 6= (a; b) (43)

(b�; b�) ) (b�; b�):
But note, in order to obtain a contradiction here, one would need to establish one-to-oneness of

the preceding correspondence mapping posted coe¢ cients to ex post estimates, a property that does

not necessarily hold. For example, in the binary manipulation setup, if cmax is su¢ ciently small, a

continuum of distinct sets of posted coe¢ cients can induce all borrowers to manipulate. But if all

borrowers manipulate by �; the manipulation is perfectly corrected by lowering the intercept by b�,

with:

F [a� b� + b(x+ �)] = F (a+ bx): (44)

Indeed, this line or argument allows one to establish potential equality of Goodhart estimates and

�xed points. We have the following proposition.

Proposition 8. Suppose borrowers are able to manipulate covariates upward by � in exchange for

an idiosyncratic stochastic cost, with the covariate bounded above at xmax and the maximum possible
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manipulation cost

cmax � 	(�; xmax; a� b�; b):

Then (a�b�; b) is a �xed point. At this �xed point the zero manipulation likelihood ratio is achieved.

Moreover, if cmax satis�es the stronger condition

cmax � 	(�; xmax; a; b);

posting the clean cohort coe¢ cients (a; b) to the �rst strategic cohort will result in their generating

Goodhart estimates equal to the �xed point (a� b�; b).

We conclude this subsection with some numerical comparative statics on how Nash models

change with the clean data slope parameter b. More speci�cally, Figures 9 and 10 consider the binary

manipulation and quadratic manipulation cost setups, respectively, contrasting Nash econometric

models (�xed points) with the corresponding Goodhart estimates (equation (37)). Consistent with

Proposition 8, in the binary manipulation setup (Figure 9), Nash and Goodhart coe¢ cients are

identical if b is su¢ ciently large. For lower values of b, the Nash and Goodhart coe¢ cients are very

similar, converging to each other at the �xed point (a; 0) if b = 0, consistent with Proposition 6.

Apparently, if one were to �rst post a model with parameters set at their historical value (a; b),

and then followed up with a single round of ex post estimation on the manipulated data, one would

arrive at parameter estimates that are close to being internally consistent �xed points�at least in

environments where borrowers have binary manipulation technologies.

By way of contrast, Figure 10 shows that Goodhart estimates di¤er from the Nash parameter

estimates if borrowers instead face the quadratic manipulation cost technology. More speci�cally,

for higher values of b, we see that Goodhart estimates di¤er from (a; b) by a wide margin. That is,

borrowers responding to (a; b) generate Goodhart coe¢ cients (b�; b�) that are far from (a; b): Notice,

in order for Goodhart estimates to be a �xed point here, it must be that condition (43) is satis�ed,

despite a large distance between (a; b) and (b�; b�). Apparently, in the quadratic manipulation cost
setup, a large di¤erence in posted models manifests itself in large di¤erences in ex post estimates.

Thus, Nash estimates di¤er from Goodhart estimates by a wide margin for high values of b:
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5.3 Stackelberg Default Prediction

As stressed by Frankel and Kartik (2023), if the econometrician has commitment power, a Nash

econometric model can generally be improved upon. After all, in solving for her Nash strategy, the

econometrician takes the distribution of manipulated covariates as given. By way of contrast, with

commitment power, the econometrician can act as a Stackelberg leader and post optimal coe¢ cients

taking into account the e¤ect of posted coe¢ cients on borrower covariate reports. For example, in

the setting considered by Frankel and Kartik, the Stackelberg econometrician always �nds it optimal

to post a model with slope � < b; in order to discourage manipulation.

A Stackelberg model (���; ���) satis�es

(���; ���) 2 argmax
�;�

L( �; �|{z}
Estimated

; �; �|{z}
Posted

; a; b|{z}
DGP

): (45)

At this point it is instructive to contrast the Nash econometric program in equation (38) with the

preceding Stackelberg program. Since, in the Nash program, the econometrician takes the covariates

as given, it is as if she takes the posted model as given. In stark contrast, in the Stackelberg

program, the econometrician properly views herself as determining the posted model, and with it,

the distribution of manipulated covariates.

Recall, the FOCs for any MLE estimator, including Nash econometric models, are L1 = L2 =

0: These FOCs ensure optimal prediction �given the data.� By way of contrast, the FOCs for

Stackelberg econometric models are:

L1(���; ���;���; ���; a; b) = �L3(���; ���;���; ���; a; b)

L2(���; ���;���; ���; a; b) = �L4(���; ���;���; ���; a; b):

That is, when the econometrician has commitment power, she is willing (and able) to sacri�ce a bit

on ex post prediction power in order to increase prediction power ex ante. She does so by taking

into account the e¤ects of the posted econometric model on borrower behavior, and these e¤ects are

captured by the partial derivatives L3 and L4:
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In the context of the binary manipulation setup, we have the following FOC for the Stackelberg

intercept:

Z
X

264
h

F (a+bx)
F (���+���x) �

1�F (a+bx)
1�F (���+���x)

i
[1�G(	(�; x; ���; ���))]f(��� + ���x)

+
h

F (a+bx)
F (���+���x+����) �

1�F (a+bx)
1�F (���+���x+����)

i
G(	(�; x; ���; ���))f(��� + ���x+ ����)

375h(x)
= �

Z
X

264 F (a+ bx) ln
h
F (���+���x+����)

F (���+���x)

i
�[1� F (a+ bx)] ln

h
1�F (���+���x+����)

1�F (���+���x)

i
375 g[	(�; x; ���; ���)]	3(�; x; ���; ���)h(x)dx:

And the FOC for the Stackelberg slope is:

Z
X

264
h

F (a+bx)
F (���+���x) �

1�F (a+bx)
1�F (���+���x)

i
[1�G(	(�; x; ���; ���))]f(��� + ���x)x

+
h

F (a+bx)
F (���+���x+����) �

1�F (a+bx)
1�F (���+���x+����)

i
G(	(�; x; ���; ���))f(��� + ���x+ ����)(x+ �)

375h(x)dx
= �

Z
X

264 F (a+ bx) ln
h
F (���+���x+����)

F (���+���x)

i
+[1� F (a+ bx)] ln

h
1�F (���+���x+����)

1�F (���+���x)

i
375 g[	(�; x; ���; ���)]	4(�; x; ���; ���)h(x)dx:

In the context of quadratic manipulation costs, the FOC for the Stackelberg intercept is:

Z
C

Z
X

264 F (a+bx)
F [���+���x+���m(x;���;���;c)]

� 1�F (a+bx)
1�F [���+���x+���m(x;���;���;c)]

375 f [��� + ���x+ ���m(x; ���; ���; c)]h(x)
(c)dxdc (46)

= �
Z
C

Z
X

264 F (a+bx)
F [���+���x+���m(x;���;���;c)]

� 1�F (a+bx)
1�F [���+���x+���m(x;���;���;c)]

375 f [��� + ���x+ ���m(x; ���; ���; c)]���m2(x; �
��; ���; c)h(x)
(c)dxdc:

Or, more compactly:

0 =

Z
C

Z
X

264
�

F (a+bx)
F [���+���x+���m(x;���;���;c)] �

1�F (a+bx)
1�F [���+���x+���m(x;���;���;c)]

�
f [��� + ���x+ ���m(x; ���; ���; c)][1 + ���m2(x; �

��; ���; c)]h(x)
(c)

375 dxdc: (47)

The FOC for the Stackelberg slope is:

Z
C

Z
X

264 F (a+bx)
F [���+���x+���m(x;���;���;c)]�

1�F (a+bx)
1�F [���+���x+���m(x;���;���;c)]

375 f [��� + ���x+ ���m(x; ���; ���; c)][x+m(x; ���; ���; c)]h(x)
(c)dxdc
= �

Z
C

Z
X

264 F (a+bx)
F [���+���x+���m(x;���;���;c)]�

1�F (a+bx)
1�F [���+���x+���m(x;���;���;c)]

375 f [��� + ���x+ ���m(x; ���; ���; c)]���m3(x; �
��; ���; c)h(x)
(c)dxdc
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Or more compactly:

0 =

Z
C

Z
X

264
�

F (a+bx)
F [���+���x+���m(x;���;���;c)] �

1�F (a+bx)
1�F [���+���x+���m(x;���;���;c)]

�
f [��� + ���x+ ���m(x; ���; ���; c)][x+m(x; ���; ���; c) + ���m3(x; �

��; ���; c)]h(x)
(c)dxdc

375 :
(48)

The following two propositions follow directly upon inspecting the preceding four FOCs.

Proposition 9. A posted econometric model with intercept and slope parameters (a; b) (derived

from clean historical data) represents a Stackelberg model if the unmanipulated covariate has no

explanatory power (b = 0):

Proposition 10. If borrowers are able to manipulate covariates upward by � in exchange for an

idiosyncratic stochastic cost, a posted model with parameters set at (a� b�; b) will be a Stackelberg

model if the covariate is bounded above at some �nite xmax and cmax � 	(�; xmax; a�b�; b):Moreover,

at this point, the zero-manipulation likelihood ratio is reached.

Figures 11 and 12 contrast Stackelberg and Nash model coe¢ cients, in the binary and quadratic

cost setups, respectively. It is startling to note that in the quadratic cost setup, Stackelberg and

Nash coe¢ cients are virtually identical. By way of contrast, there is a large di¤erence between

Stackelberg and Nash coe¢ cients in the binary manipulation setup.

The intuition behind Figure 11, depicting the binary manipulation technology, is as follows.

If b is low, the candidate Stackelberg model is also likely to have a low slope coe¢ cient, being

in the neighborhood of b: In this case, the probability of manipulation is relatively low for most

borrowers. Here the Stackelberg econometrician tries to nudge all borrowers toward homogeneity

in the direction of not manipulating. This is accomplished by posting a model with a relatively low

value of �: By way of contrast, for high values of b; the candidate Stackelberg model is likely to have

a high slope coe¢ cient in the neighborhood of b. In this case, the probability of manipulation is

relatively high for most borrowers. Here the Stackelberg econometrician tries to nudge all borrowers

toward homogeneity in the direction manipulating with probability 1. This is accomplished by

posting a model with a relatively high value of �:
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6 Multivariate Model

In the interest of analytical tractability, attention has been con�ned to estimating coe¢ cients of a

univariate econometric model. Indeed, it is well-known that little can be said about e¤ects aris-

ing from measurement error in more than one regressor (see Greene (1997)), let alone endogenous

manipulation that depends upon the coe¢ cients of the regression model per Goodhart�s law. Never-

theless, results analogous to those presented above can be obtained in a multivariate setting provided

that manipulation is con�ned to a single regressor. To take the simplest case, consider OLS/MSPE

estimation of the following linear probability model:

Pr[y = 1jx;w] = E[yjx;w] = a+ bx+ kw: (49)

Suppose the covariate w � 0 is non-manipulable, and consider any technology, such as those consid-

ered above, such that a positive measure of borrowers will report ex > x in response to any posted
coe¢ cient e� > 0:

The objective is to �nd coe¢ cients:

(b�; b�; b�) 2 arg min
(�;�;�)

E
h
(y � �� �ex� �w)2i : (50)

Noting that y = y2 here, the preceding expression for the MSPE can be written as:

MSPE = �2 + (1� �)E[y] + 2��E[ex] + 2��E[w] + 2��E[wex]
+�2E[ex2] + �2E[w2]� 2�E[wy]� 2�E[exy]: (51)

Focusing on the �nal term in the preceding equation, we note that conditional independence of ex
and y implies:

E fE[exyjx;w]g = E fE[exjx;w]E[yjx;w]g (52)

= E fE[exjx;w](a+ bx+ kw)g
= aE[ex] + bE[exx] + kE[exw]:
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And similarly, conditional independence of w and y implies:

E fE[wyjx;w]g = E fE[wjx;w]E[yjx;w]g

= E fw(a+ bx+ kw)g

= aE[w] + bE[xw] + kE[w2]:

Substituting the two preceding equalities into equation (51) allows us to rewrite the MSPE as follows:

MSPE = �2 + (1� 2�)fa+ bE[x] + kE[w]g+ 2��E[ex] + 2��E[w] + 2��E[wex] + �2E[ex2] + �2E[w2]
�2�faE[ex] + bE[exx] + kE[exw]g � 2�faE[w] + bE[xw] + kE[w2]g:

From the FOC for the intercept, we �nd:

b� = a+ bE[x] + kE[w]� b�E[ex]� b�E[w]: (53)

The FOC for b� is:
0 = b�E[ex] + b�E[wex] + b�E[ex2]� faE[ex] + bE[exx] + kE[exw]g: (54)

Substituting the expression for the intercept (53) into the FOC for b� we obtain:
0 = aE[ex] + bE[x]E[ex] + kE[w]E[ex]� b� (E[ex])2 � b�E[w]E[ex] (55)

+b�E[wex] + b�E[ex2]� faE[ex] + bE[exx] + kE[exw]g:
Rearranging terms we obtain: b� = b� �xexols + (k � b�)�wexols : (56)

Finally, the FOC for b� is:
0 = b�E[w] + b�E[wex] + b�E[w2]� faE[w] + bE[xw] + kE[w2]g: (57)

Substituting the expression for the intercept (53) into the FOC for b� we obtain:
b� = k + b� �xwols � b��exwols : (58)

31



From equations (53), (56) and (58), we have the following analog of Propositions 2 and 4,

establishing the impossibility of getting something from nothing, with:

b = 0)
�b�; b�; b�� = (a; b; k) =(a; 0; k): (59)

It thus follows that if b = 0, then (a; 0; k) represents both a Goodhart estimate and a �xed point,

consistent with Proposition 6.

We also have the following result demonstrating the analog of Propositions 3 and 5, the necessity

of at least some downward coe¢ cient slope if b > 0. In particular,

b� � b > 0 and b� � k ) b� < a: (60)

Since a �xed point model is just a special case of the estimator here, it follows that any �xed point

model must also feature some downward coe¢ cient shift, consistent with Proposition 6.

Finally, consistent with Proposition 7, it is readily veri�ed that b > 0 implies a �xed point model

cannot feature b� = 0: After all, if the posted model features a coe¢ cient of zero on the manipulable
covariate, there will be no manipulation, in which case the MSPE estimator would be (a; b; k); a

contradiction.

7 Conclusion

This paper contributes to a growing literature on econometric responses to data manipulation,

focusing on default prediction models. We suggest a number of natural directions for future work.

First, it would be useful to consider settings in which multiple covariates can be manipulated,

although it is likely that analytical results would be much more di¢ cult to obtain. Second, it would

be useful to consider whether and how standard machine-learning tools could be adapted in light of

data manipulation, again in the context of logit and probit-type credit risk prediction. Finally, as

the stock of such models grows, it would be useful to evaluate the performance of alternative models

empirically.
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Appendix

LEMMA 1. Let 
(z) � [F (z)]�1 where F (z) � ez(1 + ez)�1 or F (z) � N (z): Then 
 is strictly

decreasing and strictly convex on <. If F (z) � minf1;maxf0; zgg; then 
 is strictly decreasing and

strictly convex on (0; 1):

Proof.

To begin, note that, assuming di¤erentiability, we have


0(z) = �[F (z)]�2f(z) � 0


00(z) = [F (z)]�2
�
2[f(z)]2

F (z)
� F 00(z)

�
Notice, the �rst inequality is strict for Logit and Probit models. Consider next the linear probability

model for z 2 (0; 1): We have


0(z) = � 1
z2
< 0


00(z) = 2z�3 > 0

Consider next Logit. We have:

F (z) � ez

1 + ez

F 0(z) =
(1 + ez)ez � e2z
(1 + ez)2

=
ez

(1 + ez)2

F 00(z) =
(1 + ez)2ez � 2e2z(1 + ez)

(1 + ez)4
=
ez(1� ez)
(1 + ez)3
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Thus,


00(z) = [F (z)]�2
�
2[f(z)]2

F (z)
� F 00(z)

�
= [F (z)]�2

�
2e2z

(1 + ez)4
1 + ez

ez
� e

z(1� ez)
(1 + ez)3

�
= [F (z)]�2

�
2ez

(1 + ez)3
� e

z(1� ez)
(1 + ez)3

�
= [F (z)]�2

�
2ez � ez + e2z
(1 + ez)3

�
= [F (z)]�2

�
ez(1 + ez)

(1 + ez)3

�
= [F (z)]�2

�
ez

(1 + ez)2

�
=

(1 + ez)2

e2z
ez

(1 + ez)2

=
1

ez
> 0

Thus we have established that 
 is strictly decreasing and convex in the case of Logit.

Finally, let us establish convexity when we consider the Normal CDF. We have:

F (z) =
1p
2�

zZ
�1

e�
1
2
t2dt

F 0(z) =
1p
2�
e�

1
2
z2

F 00(z) = � zp
2�
e�

1
2
z2 = �zF 0(z)

Thus we have:


00(z) = [F (z)]�2
�
2[f(z)]2

F (z)
� F 00(z)

�
= [F (z)]�2

�
2[f(z)]2

F (z)
+ zf(z)

�
= [F (z)]�2f(z)

�
2f(z)

F (z)
+ z

�
= [F (z)]�2f(z)

�
2f(�z)
1� F (�z) + z

�
= [F (z)]�2f(z) [2h(�z) + z]

= [F (z)]�2f(z) [h(�z) + h(�z) + z] > 0
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Where the last line follows from Baricz (2008), who shows that for a standard normal random

variable h(�s) + s > 0:�
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Figure 1: Goodhart’s Law - Linear prediction model - Binary manipulation. We
plot OLS Goodhart estimates against β̃ of the posted credit prediction model, with (α̃, β̃) =

(a, b), and for b ∈]0, b]. In the first panel we plot α̂ and in the second panel β̂/b. In
the third panel we plot the difference between the optimal mean square prediction error,
MSPE(α̂, β̂; α̃, β̃; a, b), with manipulation and using (α̂, β̂), and the optimal mean square
prediction error with no manipulation and therefore based on estimates (a, b). The figure
assumes a binary manipulation decision, with m = δ = 0.2, probability distribution of
manipulation cost, G, uniform in [0, cmax], and a linear prediction model of credit risk, α̃+β̃x,
where x has uniform distribution on [xmin, xmax], with xmin = 0, and xmax = 1−a

b
− δ = 1.8

to ensure a positive probability for all x and all β̃. We set a = 0.5, and b = 0.25 to ensure
consistency across the different credit models, that is the survival probabilities (i.e., the
interest rates) are similar, for the same x, for the linear and the logit model. cmax = 0.03
is set to make sure at x = xmax manipulation probability is lower than 1. The remaining
parameters are r = 0 and l = 0.5.
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Figure 2: Incentive compatible manipulation - Linear prediction model - Binary
manipulation. We plot the probability of manipulation, G(Ψ(m,x, α̃, β̃)), for three values

of x, against β̃ of the posted credit prediction model, with (α̃, β̃) = (a, b), and for b ∈]0, b].
The model has binary manipulation decision, with m = δ = 0.2 and probability distribution
of manipulation cost, G, uniform in [0, cmax]. The figure is based on a linear prediction model

of credit risk, α̃ + β̃x, where x has uniform distribution on [xmin, xmax], with xmin = 0, and

xmax = 1−a
b

− δ = 1.8 to ensure a positive probability for all x and all β̃. We set a = 0.5,

and b = 0.25 to ensure consistency across the different credit models, that is the survival
probabilities (i.e., the interest rates) are similar, for the same x, for the linear and the logit
model. cmax = 0.03 is set to make sure at x = xmax manipulation probability is lower than
1. The remaining parameters are r = 0 and l = 0.5.
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Figure 3: Goodhart’s Law - Linear prediction model - Convex manipulation cost.
We plot OLS Goodhart estimates against β̃ of the posted credit prediction model, with
(α̃, β̃) = (a, b), and for b ∈]0, b]. In the first panel we plot α̂ and in the second panel β̂/b.
In the third panel we plot the difference between the optimal mean square prediction error,
MSPE(α̂, β̂; α̃, β̃; a, b), with manipulation and using (α̂, β̂), and the optimal mean square
prediction error with no manipulation and therefore based on estimates (a, b). The figure
assumes convex manipulation cost function, with c = 1, and a linear prediction model of
credit risk, α̃ + β̃x, where x has uniform distribution on [xmin, xmax], with xmin = 0, and

xmax = 1−a
b

− δ = 1.8 to ensure a positive probability for all x and all β̃. We set a = 0.5,

and b = 0.25 to ensure consistency across the different credit models, that is the survival
probabilities (i.e., the interest rates) are similar, for the same x, for the linear and the logit
model. The remaining parameters are r = 0 and l = 0.5.
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Figure 4: Incentive compatible manipulation - Linear prediction model - Convex
manipulation cost. We plot optimal manipulation, m∗(x, α̃, β̃), for three values of x,

against β̃ of the posted credit prediction model, with (α̃, β̃) = (a, b), and for b ∈]0, b]. The
model has convex manipulation cost function, with c = 1. The figure is based on a linear
prediction model of credit risk, α̃ + β̃x, where x has uniform distribution on [xmin, xmax],

with xmin = 0, and xmax = 1−a
b

− δ to ensure a positive probability for all x and all β̃. We

set a = 0.5, and b = 0.25 to ensure consistency across the different credit models, that is the
survival probabilities (i.e., the interest rates) are similar, for the same x, for the linear and
the logit model. The remaining parameters are r = 0 and l = 0.5.
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Figure 5: Goodhart’s Law - Logit prediction model - Binary manipulation. We
plot MLE Goodhart estimates against β̃ of the posted credit prediction model, with (α̃, β̃) =

(a, b), and for b ∈]0, b]. In the first panel we plot α̂ and in the second panel β̂/b. In the
third panel we plot the difference between the optimal likelihood with manipulation, L =
L(α̂, β̂; α̃, β̃; a, b), based on estimates (α̂, β̂), and the optimal likelihood with no manipulation,
L0, and therefore based on estimates (a, b). The figure assumes a binary manipulation
decision, with m = δ = 0.2, probability distribution of manipulation cost, G, uniform in
[0, cmax], and a logit prediction model of credit risk, F (α̃ + β̃x), with F (z) = ez(1 + ez)−1,
where x has uniform distribution on [xmin, xmax], with xmin = 0, and xmax = 1. The remaining

parameters are r = 0, l = 0.5, a = 0, and b = 1. Because Ψ(m,xmax, 0, β̃) is a concave

function of β̃ with Ψ∗ = maxβ̃ Ψ(m,xmax, 0, β̃) ≈ 0.0335, to achieve that manipulation takes

place for all x ∈ [xmin, xmax] for high β̃, we set cmax = Ψ∗.
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Figure 6: Incentive compatible manipulation - Logit prediction model - Binary
manipulation. We plot the probability of manipulation, G(Ψ(m,x, α̃, β̃)), for three values

of x, against β̃ of the posted credit prediction model, with (α̃, β̃) = (a, b), and for b ∈
]0, b]. The figure assumes a binary manipulation decision, with m = δ = 0.2, probability
distribution of manipulation cost, G, uniform in [0, cmax], and a logit prediction model of

credit risk, F (α̃ + β̃x), with F (z) = ez(1 + ez)−1, where x has uniform distribution on
[xmin, xmax], with xmin = 0, and xmax = 1. The remaining parameters are r = 0, l = 0.5,
a = 0, and b = 1.
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Figure 7: Goodhart’s Law - Logit prediction model - Convex manipulation cost.
We plot MLE Goodhart estimates against β̃ of the posted credit prediction model, with
(α̃, β̃) = (a, b), and for b ∈]0, b]. In the first panel we plot α̂ and in the second panel β̂/b. In
the third panel we plot the difference between the optimal likelihood with manipulation, L =
L(α̂, β̂; α̃, β̃; a, b), based on estimates (α̂, β̂), and the optimal likelihood with no manipulation,
L0, and therefore based on estimates (a, b). The figure assumes a convex manipulation

cost function, with c = 1, and a logit prediction model of credit risk, F (α̃ + β̃x), with
F (z) = ez(1 + ez)−1, where x has uniform distribution on [xmin, xmax], with xmin = 0, and
xmax = 1. The remaining parameters are r = 0, l = 0.5, a = 0, and b = 0.85.
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Figure 8: Incentive compatible manipulation - Logit prediction model - Convex
manipulation cost. We plot optimal manipulation, m∗(x, α̃, β̃), for three values of x,

against β̃ of the posted credit prediction model, with (α̃, β̃) = (a, b), and for b ∈]0, b]. The
model has convex manipulation cost function, with c = 1. The figure is based on a logit
prediction model of credit risk, F (α̃ + β̃x), with F (z) = ez(1 + ez)−1, where x has uniform
distribution on [xmin, xmax], with xmin = 0, and xmax = 1. The remaining parameters are
r = 0, l = 0.5, a = 0, and b = 1.
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Figure 9: Nash vs Goodhart - Logit prediction model - Binary manipulation. We
plot MLE estimates against β̃ of the posted credit prediction model, with (α̃, β̃) = (a, b),

and for b ∈]0, b]. In the first panel we plot α̂ and in the second panel β̂/b. We consider two
alternative programs: the Nash equilibrium, (α∗, β∗) = argmax(α,β) L(α, β;α∗, β∗; a, b), and

the one used to analyze the effect of Goodhart’s Law, (α̂, β̂) = argmax(α,β) L(α, β; a, b; a, b).
In the third panel we plot the difference between the optimal likelihood in the Nash case, LN ,
and the optimal likelihood in the Goodhart’s case, LG. The figure assumes a binary manipu-
lation decision, with m = δ = 0.2, probability distribution of manipulation cost, G, uniform
in [0, cmax], and a logit prediction model of credit risk, F (α̃+ β̃x), with F (z) = ez(1+ ez)−1,
where x has uniform distribution on [xmin, xmax], with xmin = 0, and xmax = 1. The remain-

ing parameters are r = 0, l = 0.5, a = 0, and b = 1. Because Ψ(m,xmax, 0, β̃) is a concave

function of β̃ with Ψ∗ = maxβ̃ Ψ(m,xmax, 0, β̃) = 0.0335, to achieve that manipulation takes

place for all x ∈ [xmin, xmax] for high β̃, we set cmax = Ψ∗.
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Figure 10: Nash vs Goodhart - Logit prediction model - Convex manipulation
cost. We plot against β̃ of the posted credit prediction model, with (α̃, β̃) = (a, b), and for

b ∈]0, b], in the first panel the MLE estimate α̂ and in the second panel β̂/b. We consider two
alternative programs: the Nash equilibrium, (α∗, β∗) = argmax(α,β) L(α, β;α∗, β∗; a, b), and

the one used to analyze the effect of Goodhart’s Law, (α̂, β̂) = argmax(α,β) L(α, β; a, b; a, b).
In the third panel we plot the difference between the optimal likelihood in the Nash case,
LN , and the optimal likelihood in the Goodhart’s case, LG. The figure assumes a convex
manipulation cost function, with c = 1, and a logit prediction model of credit risk, F (α̃+β̃x),
with F (z) = ez(1 + ez)−1, where x has uniform distribution on [xmin, xmax], with xmin = 0,
and xmax = 1. The remaining parameters are r = 0, l = 0.5, a = 0, and b = 0.85. Because
Ψ(m,xmax, 0, β̃) is a concave function of β̃ with Ψ∗ = maxβ̃ Ψ(m,xmax, 0, β̃) = 0.0335, to

achieve that manipulation takes place for all x ∈ [xmin, xmax] for high β̃, we set cmax = Ψ∗.
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Figure 11: Nash and Stackelberg equilibria - Logit prediction model - Binary ma-
nipulation. We plot against β̃ of the posted credit prediction model, with (α̃, β̃) = (a, b),

and for b ∈]0, b], in the first panel the MLE estimate α̂ and in the second panel β̂/b. In
the third panel we plot the difference between the optimal likelihood with manipulation,
L = L(α̂, β̂; α̃, β̃; a, b), based on estimates (α̂, β̂), and the optimal likelihood with no manip-
ulation, L0, and therefore based on estimates (a, b). We consider two alternative programs:
the Nash equilibrium, (α∗, β∗) = argmax(α,β) L(α, β;α∗, β∗; a, b), and the Stackelberg equilib-
rium, (α∗∗, β∗∗) = argmax(α,β) L(α, β;α, β; a, b). The figure assumes a binary manipulation
decision, with m = δ = 0.2, probability distribution of manipulation cost, G, uniform in
[0, cmax], and a logit prediction model of credit risk, F (α̃ + β̃x), with F (z) = ez(1 + ez)−1,
where x has uniform distribution on [xmin, xmax], with xmin = 0, and xmax = 1. The remain-

ing parameters are r = 0, l = 0.5, a = 0, and b = 1. Because Ψ(m,xmax, 0, β̃) is a concave

function of β̃ with Ψ∗ = maxβ̃ Ψ(m,xmax, 0, β̃) = 0.0335, to achieve that manipulation takes

place for all x ∈ [xmin, xmax] for high β̃, we set cmax = Ψ∗.
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Figure 12: Nash and Stackelberg equilibria - Logit prediction model - Con-
vex manipulation cost. We plot against β̃ of the posted credit prediction model, with
(α̃, β̃) = (a, b), and for b ∈]0, b], in the first panel the MLE estimate α̂ and in the second

panel β̂/b. In the third panel we plot the difference between the optimal likelihood with

manipulation, L = L(α̂, β̂; α̃, β̃; a, b), based on estimates (α̂, β̂), and the optimal likelihood
with no manipulation, L0, and therefore based on estimates (a, b). We consider two alter-
native programs: the Nash equilibrium, (α∗, β∗) = argmax(α,β) L(α, β;α∗, β∗; a, b), and the
Stackelberg equilibrium, (α∗∗, β∗∗) = argmax(α,β) L(α, β;α, β; a, b). The figure assumes a
convex manipulation cost function, with c = 1, and a logit prediction model of credit risk,
F (α̃+ β̃x), with F (z) = ez(1 + ez)−1, where x has uniform distribution on [xmin, xmax], with
xmin = 0, and xmax = 1. The remaining parameters are r = 0, l = 0.5, a = 0, and b = 0.85.


