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Abstract

We consider identification of monetary shocks and their causal impacts in quasi-
linear environments where (i) agents may possess subjective beliefs and (ii) monetary
authorities manage current and future interest rates (e.g., forward guidance). Assum-
ing rational expectations or risk-neutrality trivially enables identification. Without
those assumptions, identification of monetary shocks from asset prices hinges on
a Long-Run Neutrality condition, roughly meaning policy does not affect the com-
pensation for permanent risks. We construct a non-parametric test of the Long-Run
Neutrality condition, related to the literature on FOMC announcement effects, and
argue that it is violated in the data. Finally, we present some example models in
which the Long-Run Neutrality condition is violated, illustrating how this condition
is generally distinct from conventional notions of monetary neutrality.
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1 Introduction

How does a monetary authority influence the economy through speeches, forward guid-
ance, and other policies targeting the future? In this paper, we uncover and explore an
identification challenge associated to this question. The basic idea is that forward guid-
ance and related policies operate by manipulating investor beliefs, which are not directly
observable. Our key question becomes whether or not policy-induced forecast revisions
can instead be obtained indirectly by looking at rich enough collections of asset mar-
kets. In this environment, we first show that identification of the various monetary
surprises and their impacts requires a Long-Run Neutrality condition that differs from
typical notions of monetary policy neutrality. Second, we propose a model-free test of
this condition; the evidence suggests Long-Run Neutrality is violated.

Multiple monetary instruments. Even in a simplified world without any central bank
information advantage and with only conventional tools (e.g., no long-term asset pur-
chases/sales), monetary authorities impact the economy through several potential chan-
nels. Our starting point is that every FOMC meeting can contain up to three categories
of shocks:

1. Short-Rate Shocks: unexpected changes to the short-term interest rate

2. Forward-Guidance Shocks: unexpected modifications to the expected future rate path

3. Uncertainty Shocks: unexpected changes in uncertainty about future rates

For example, when a central bank raises the short-term interest rate rate (Short-Rate
Shock), investors must form beliefs about the persistence of the rate hike (Forward-
Guidance Shock), and these investors furthermore must form beliefs about the risk
that policy rates rise further in the future (Uncertainty Shock). Of course, Forward-
Guidance Shocks and Uncertainty Shocks may also occur in isolation without any Short-
Rate Shock. We seek the causal impact of each type of policy shock on the economy,
which first requires a shock identification procedure.

Non-identification. Given this framework, how can the various policy shocks be re-
covered? For simplicity, imagine we are given a time series of the Short-Rate Shocks.
A common approach examines high-frequency changes to Fed Funds futures prices on
the FOMC meeting day (Krueger and Kuttner, 1996; Rudebusch, 1998; Kuttner, 2001;
Rudebusch, 2002; Bernanke and Kuttner, 2005; Piazzesi and Swanson, 2008). While this
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procedure is not uncontroversial, we take it for granted to engage with more novel iden-
tification issues.

Turning to Forward-Guidance and Uncertainty Shocks, we ask whether they can be
recovered from asset price data. Asset markets are a natural arena to explore because of
the richness in financial claims covering many horizons (e.g., very far into the future), at
many levels of contingency (e.g., isolating specific aspects of the probability distribution),
and available at a high frequency. We will discuss survey data as a viable alternative in
various parts of the paper, but note for now that surveys do not possess the same richness
in horizon, contingency, or frequency.

Consider Forward-Guidance Shocks. A first thought might be to use long-term yields
to reveal expectations about future short rates (Expectations Hypothesis). But the pre-
ponderance of evidence stands against the Expectations Hypothesis, because of the exis-
tence of bond risk premia, and more importantly the time-variation in these risk premia.
Changes to the yield curve can only identify shocks to a risk-adjusted expectation of
future short rates (for example, the risk-neutral expectation). Currently, no model-free
mapping exists between these risk-adjusted expectations and investors’ expectations.
Assuming this gap away seems like wishful thinking, since unlike short-horizon Fed
Funds futures, significant risk premia exist in long-term bonds.

Identification of Uncertainty Shocks faces an analogous issue, but in distribution
space rather than mean space. Even given a full set of options on interest rates of all ma-
turities, all we can identify is a risk-adjusted distribution of future interest rates. Given
the existence of time-varying risk premia, it is nontrivial to map this risk-adjusted distri-
bution into investors’ subjective distribution. Some approaches have been proposed for
separate identification of Short-Rate Shocks versus a second “path” factor encompassing
all other monetary shocks (Gürkaynak et al., 2005b; Swanson, 2021). But interpreting
this second factor is challenging without a model that allows us to separate the impacts
of beliefs and risk premia. Our framework shows that isolating beliefs is critical.

Identification is not hopeless. Our core set of theoretical results says that, in quasi-
linear environments, Forward-Guidance and (to a lesser extent) Uncertainty Shocks can
be identified from asset prices if and only if permanent risks and their risk prices are
unaffected by monetary policy. That is, if rational expectations and risk-neutrality cannot
be assumed to hold, and if we do not write down a fully-specified model of investor
preferences and beliefs, then identification requires long-run risk prices to be invariant to
monetary policy. For short, we refer to this monetary-invariance condition as Long-Run
Neutrality. This exact condition is effectively imposed as an identification assumption in
the recent papers of Backus et al. (2022) and Haddad et al. (2023), which had different
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but related goals. As we show, this is not a coincidence: identification requires such a
Long-Run Neutrality assumption.

Our results connect closely to a broader issue in asset pricing, so-called recovery
theory (Ross, 2015; Borovička et al., 2016). Investor beliefs are not revealed by asset
prices, because beliefs are co-mingled with other permanent components of marginal
utility. In the context of monetary policy, there is a nuance: we do not seek beliefs
themselves, but rather shocks to beliefs. And this is why the key assumption of recovery
theory, absence of a permanent component in marginal utility, is replaced by the invariance
of such permanent component to monetary policy.

In our paper, we develop a non-parametric test of Long-Run Neutrality. The return of
the growth-optimal portfolio in excess of a long-maturity bond identifies the martingale
in the pricing kernel (Alvarez and Jermann, 2005). Long-Run Neutrality implies this
investment strategy behaves similarly on Fed announcement and non-announcement
days. Supposing we can proxy the growth-optimal portfolio with equities and the long-
maturity bond with Treasury bonds, a growing body of evidence suggests this prediction
of Long-Run Neutrality is rejected. We cite this “announcement effects” literature below
and defer a discussion of the exact numbers and methodologies to the main text.

We also provide novel comprehensive evidence on the relative returns of equities
and long-term bonds surrounding Fed announcements. Our evidence improves upon
the literature in several ways. First, the bonds we investigate are longer-maturity than
those commonly studied in the announcement effects literature. Second, we analyze the
returns of equities and bonds at various frequencies—from 15-minute to daily windows
surrounding monetary announcements. Third, the overwhelming majority of the litera-
ture studies average returns near announcements, whereas our test requires and our data
allows us to examine other moments beyond the mean. Fourth, the existing literature of-
ten studies equities and bonds separately and in differing sample periods; we provide a
consistent sample to study them jointly. The preponderance of our new evidence points
to a failure of Long-Run Neutrality. And so we conclude that Forward-Guidance and
Uncertainty Shocks cannot be identified from asset prices alone.

Finally, we discuss structural models in which economic growth and uncertainty
are priced sources of risks. A leading example is Bansal and Yaron (2004). If we take
these models seriously, our Long-Run Neutrality condition requires both growth and
uncertainty to be invariant to monetary policy, both in the short run and the long run.
Through the lens of these models, identifying the effects of monetary policy requires
precisely that monetary policy has no effects.
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Literature review. Our framework builds on two pillars. First, we entertain the pos-
sibility that market participants possess biased beliefs about future interest rates, asset
returns, and monetary policy (Ball and Croushore, 2003; Hamilton et al., 2011; Chun,
2011; Giglio and Kelly, 2018; Cieslak, 2018; Crump et al., 2018; Kryvtsov and Petersen,
2019; d’Arienzo, 2020; Wang, 2021; Xu, 2019; Nagel and Xu, 2022; Bianchi et al., 2022b).
Second, we embrace environments in which monetary authorities can manage beliefs
about future interest rates (Poole et al., 2002; Gürkaynak et al., 2005b; Campbell et al.,
2012; Del Negro et al., 2012; Swanson, 2021), implying the presence of several distinct
monetary effects, even ignoring any central bank information advantage (Romer and
Romer, 2000; Melosi, 2017; Nakamura and Steinsson, 2018; Cieslak and Schrimpf, 2019;
Miranda-Agrippino and Ricco, 2021).1

In this class of environments, estimating the causal impact of monetary policy re-
quires a Long-Run Neutrality condition that is related to belief recovery theory (Ross,
2015; Borovička et al., 2016; Qin and Linetsky, 2016). Following a literature that de-
composes the pricing kernel into permanent and stationary components (Kazemi, 1992;
Alvarez and Jermann, 2005; Hansen and Scheinkman, 2009; Bakshi and Chabi-Yo, 2012;
Qin and Linetsky, 2017; Corsetti et al., 2023), we develop a model-free test of the Long-
Run Neutrality condition in the context of monetary policy.

Our test zooms in on asset price changes around FOMC announcements, which is
related to the literature on “announcement effects.” Several authors have argued that eq-
uity risk premia are strongly influenced by monetary policy announcements, including
both actions and communications (Pearce and Roley, 1985; Rosa, 2011; Savor and Wilson,
2013, 2014; Lucca and Moench, 2015; Ai and Bansal, 2018; Cieslak et al., 2019; Cieslak
and Pang, 2021; Bianchi et al., 2022a,c; Bauer et al., 2023). A related literature examines
FOMC announcement effects in government bonds (Ederington and Lee, 1993; Gürkay-
nak et al., 2005a; Beber and Brandt, 2006; Faust et al., 2007; Hanson and Stein, 2015;
Hillenbrand, 2021; Hanson et al., 2021). We connect these literatures by investigating
the announcement effect of a particular long-short portfolio, which is the theoretically
appropriate object for our purposes.

Finally, to illustrate how strong the Long-Run Neutrality condition can be, we con-
sider a class of structural environments in which long-run growth and uncertainty be-

1A large theoretical literature has also considered the effects of monetary policy in environments with
distorted beliefs. As we avoid putting too much structure on agents’ beliefs, we do not directly engage with
this literature, but some notable examples include Bernanke and Woodford (1997), Evans and Honkapohja
(2003), Andolfatto and Gomme (2003), Schorfheide (2005), Milani (2008), Gasteiger (2014), Hommes et al.
(2019), and Caballero and Simsek (2022). Caballero and Simsek (2022), in particular, argue that subjective
belief dynamics themselves could be the origin of monetary policy shocks.
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come priced state variables. A large empirical literature suggests that certain longer-term
prospects and news about these prospects matter (McQueen and Roley, 1993; Francis
and Ramey, 2005; Beaudry and Portier, 2006; Barsky and Sims, 2011; Schmitt-Grohé and
Uribe, 2012; Kurmann and Otrok, 2013; Barsky et al., 2015; Leduc and Liu, 2016; Naka-
mura et al., 2017; Basu and Bundick, 2017; Schorfheide et al., 2018; Berger et al., 2020; Liu
and Matthies, 2022). Models consistent with this evidence imply that persistent shocks
to economic growth and uncertainty comprise the permanent component of the pric-
ing kernel (Bansal and Yaron, 2004; Beaudry and Portier, 2004; Bloom, 2009; Bidder and
Dew-Becker, 2016; Christiano et al., 2014; Fajgelbaum et al., 2017; Bianchi et al., 2018;
Di Tella, 2017; Di Tella and Hall, 2022; Bianchi et al., 2023). A related literature also theo-
rizes and documents the importance of monetary and other policy uncertainty (Baker et
al., 2016; Creal and Wu, 2017; Husted et al., 2020; Pastor and Veronesi, 2012; Pástor and
Veronesi, 2013; Kelly et al., 2016). If we accept these types of environments, Long-Run
Neutrality implies that monetary policy does not affect the probability distribution of
future growth.

2 A Simple VAR Example

We begin with a simple example to illuminate the key issues. The point of this model is
motivational: it allows us to set up our questions, explain the crux of the identification
challenges, and then demonstrate conditions under which some types of identification
are possible. In particular, we discuss why it is desirable to obtain investor forecast
revisions about the interest rate path, as well as why obtaining these forecast revisions is
highly non-trivial. Section 3 substantially generalizes the model and furthermore allows
some types nonlinearities to permit the broadest statement of our identification results.

2.1 Model with two monetary actions

Consider a three-state model

Xt =

gt

rt

ft

 =

(demeaned) growth rate
(demeaned) interest rate

forward guidance

 .

We presume that these states evolve dynamically according to

Xt+1 = AXt + B∆Wt+1, (1)
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where ∆Wt+1 ∼ Normal(0, I) is a 3-dimensional vector of Normal shocks. For the pur-
pose of this example, we will think of the shocks ∆Wt+1 as containing a “real shock”
and two “monetary shocks” that are completely governed by central bank actions—if B
were a diagonal matrix, we could assign these labels to the individual shocks, but that is
not necessary for our purposes. Equation (1) governs the objective state dynamics, which
may differ from agents’ perceived dynamics that we detail in Section 2.2.

Let us specify the persistence matrix A. Assume

A =

agg agr ag f

arg arr ar f

0 0 a f f

 . (2)

and that A is stable. Note that agr and ag f capture the effects of short rates and for-
ward guidance on growth (in conventional models, these would take negative values).
By contrast, arg captures the “feedback effect” of growth into the interest rate rule (in
conventional models, this would be positive). And ar f captures the transmission from
forward guidance into the short-rate; for example, if ar f > 0, that means that a positive
shock to ft signals higher future short rates. In fact, the entire purpose of including f in
this system is to add an additional factor governing future short rates. Finally, forward
guidance ft evolves as a univariate AR(1) independently of (gt, rt), a setup that is not
necessary to any result but is transparent. We need not make any assumptions about B.

2.2 Subjective beliefs

We allow agents’ beliefs to potentially be non-rational. While we take no stand here,
belief distortions could come from multiple sources: pure cognitive biases, imperfect
information or attention, finite samples with imperfect priors, etc. To keep things sim-
ple, we consider a belief distortion that modifies the persistence of Xt. Under agents’
subjective beliefs

Xt+1 = ÃXt + B∆W̃t+1, ∆W̃t+1 ∼ Normal(0, I). (3)

We will assume Ã, like A, is a stable matrix. The notation Ẽ will stand for the subjective
expectation operator for agents in our model, which may or may not coincide with the
objective expectation E.
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Thus, agents perceive

∆W̃t+1 = ∆Wt+1 − Lt, where Lt := B−1(Ã − A
)
Xt, (4)

to be a standard Normal shock. One interpretation is that the vector Lt represents in-
vestors’ time-varying degree of optimism.

If we observe the vector Xt for long enough, we can obtain A by linear regression.
However, it will be difficult to obtain Ã this way, because regressions take place under
the objective measure. Instead, one would need to observe Ẽt[Xt+1]—potentially from
survey data—and project these expectations onto Xt to obtain Ã.

Of particular interest are the perceived growth dynamics. To keep the belief distortion
to the minimum level needed for our results, we assume

Ã =

agg agr ag f

ãrg ãrr ãr f

0 0 ã f f

 . (5)

That is, agents hold no biases directly about the dynamics of gt. Belief distortions still
do affect growth forecasts, but only through biases about the dynamics of (rt, ft).

2.3 The causal effects of monetary policy

Following a large portion of the literature, we would like to answer the question “what
are the causal effects of monetary policy on future growth?” Here, there are two compo-
nents of policy: short rates and forward guidance.

A short-rate shock at time τ defined as

zr
τ := rτ − Ẽ[rτ | Xτ−1]. (6)

In this paper, we take as given the ability to non-parametrically identify the short rate
shock from data. In particular, assume the existence of a financial market (e.g., Fed
Funds futures) whose price corresponds to Ẽ[rτ | Xτ−1] at time τ − 1. It is technically
appropriate to use the investor expectation Ẽ here, because financial markets reflect
investor beliefs.

A forward-guidance shock at time τ is defined as

z f
τ := fτ − Ẽ[ fτ | Xτ−1]. (7)
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Unlike the short-rate shock, we do not assume the forward-guidance shock is non-
parameterically identified. This will be at the heart of our identification challenges.
For completeness, also define the growth shock zg

τ := gτ − Ẽ[gτ | Xτ−1].
Stack the shocks into the vector

zτ :=

zg
τ

zr
τ

z f
τ

 = B∆W̃τ.

These shocks are reduced-form in nature, but that is not the key issue: if investors held
rational beliefs, ∆W = ∆W̃, then z would span the structural shocks. The complication
here, instead, comes from the non-rational beliefs in equation (4): the reduced-form
shocks

zτ = B∆Wτ − (Ã − A)Xτ−1 (8)

are related to the true structural shocks ∆W, with a bias that is a function of lagged X.
What are the causal effects of zr

τ and z f
τ on gτ+t? Because we do not have a full

structural model of monetary action, we define these causal effects by the IRFs

Dg,z
h :=

∂

∂z′
E
[

gτ+h | Xτ−1, zτ = z
]
=

1
0
0

 · Ah (9)

The second and third entries of this IRF tell us the effects of the short-rate and forward-
guidance shocks. Suppose we seek Dg,z

h .
To measure Dg,z

h empirically, we may run a regression of future growth gτ+h onto the
shock vector zτ, the lagged state Xτ−1, and a constant. In principle, this “Jorda local
projection” approach flexibly estimates the effect of z on future g at various horizons
Jordà (2005). (The Jorda approach is considered by some to be more robust to model
misspecification than the alternative that estimates the VAR(1) and computes Ah.) For
emphasis, we give this procedure a name:

Procedure 1. The estimate of bh from the regression

gτ+h = ah + b′hzτ + c′hXτ−1 + ϵτ+h (10)

is an unbiased and consistent estimator of Dg,z
h .
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Let us mention an alternative which also recovers the desired IRF Dg,z
h . If we can

measure a time series of the forward-guidance variable f , then we can construct best-
predictors of it just before monetary announcements, as instruments for the objective
expectation Eτ−1[ fτ]. In that case, we have an instrument for the objective surprise
ẑ f

τ := fτ − Eτ−1[ fτ]. Of course, since (g, r) are observable, we can similarly obtain the
rational version of the entire reduced-form shock vector, ẑτ := (ẑg

τ, ẑr
τ, ẑ f

τ)
′. Using this

objective surprise ẑτ in place of the perceived surprise zτ in Procedure 1 works just as
well for estimating the IRF Dg,z

h .
The obstacles to implementing Procedure 1 are twofold. First, we need to control

for Xτ−1 in our estimation. But since X includes the unobservable forward-guidance
variable f , we will need a method to recover f . What is this method? Second, we
require the shocks zτ. As mentioned above, we assume that the short-rate shock zr

τ is
observed from financial markets. But how can we recover z f

τ? Given the forward-looking
nature of financial markets, let us broach the possibility that asset prices can inform us
about both of f and z f .2

2.4 Identifying forward guidance from asset prices

We need to recover a time series for f , as well as its perceived shock z f . Since f is
primarily about future short-term interest rates, observation of the market’s expectation
of future short rates should suffice in place of f . A natural place to look for these market
beliefs are Treasury bond markets.

The problem with using asset markets is that they do not directly reveal the market’s
expectation, but rather a risk-adjusted expectation. To address this discrepancy, we will
first write down a standard affine term structure model (Duffie and Kan, 1996; Dai
and Singleton, 2002; Duffee, 2002; Ang and Piazzesi, 2003) and then impose sufficient
structure on the model. In doing so, we will be explicit about which conditions allow us
to invert risk adjustments and recover the market expectation.

Pricing model. The asset-pricing model in this example features zero inflation for sim-

2We do not discuss the growth shock zg for two reasons. In general, although zg is not a policy
choice, one should include proxies for this growth shock. Indeed, the conditional shock covariances are
Cov[zg

τ , zτ | Xτ−1] = (1, 0, 0)BB′, so omission of zg
τ could result in biased estimates. Unless the first

column and row of B are both proportional to (1, 0, 0)—i.e., unless r and f surprises do not respond
to growth information—such biases will arise. That said, we do not discuss this issue further because
it is directly related to the vast literature on the “information effect” in monetary policy. For example,
some papers argue that adding enough appropriate controls for central bank information is required to
get an appropriate monetary policy instrument (Miranda-Agrippino and Ricco, 2021; Bauer and Swanson,
2023a,b).
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plicity, and so the distinction between real and nominal is immaterial here. To the dy-
namics in Section 2.1, we add the following one-period stochastic discount factor (SDF):

St+1

St
= exp

[
− (r̄ + rt)−

1
2

π′
tπt − π′

t∆Wt+1

]
, (11)

where πt = π0 + ΠXt is the time-varying risk price vector. Notice that the SDF is
specified under the objective probability measure. This is immaterial and only written
this way to conform with the bond pricing literature.

We can also re-write the SDF in terms of the investor measure:

S̃t+1

S̃t
= exp

[
− (r̄ + rt)−

1
2
(πt + Lt)

′(πt + Lt)− (πt + Lt)
′∆W̃t+1

]
. (12)

The variable exp[L′
t∆Wt+1 − 1

2 L′
tLt] =

St+1/S̃t+1
St/S̃t

changes the probability measure from the
objective one to investors’ subjective one, while S̃ represents investor marginal utility.
Notice that investors’ perceived risk prices are πt + Lt.

In this conditionally log-normal setting, the risk-neutral dynamics of the state vector
are given by

Xt+1 = A∗
0 + A∗Xt + B∆W∗

t+1, (13)

where A∗
0 := −Bπ0

and A∗ := A − BΠ,

where ∆W∗
t+1 is a Normal shock under the risk-neutral distribution. This framework can

be used to solve for bond prices of all maturities. The equilibrium yield-to-maturity for
an n-period risk-free zero-coupon bond is given by

y(n)t =
1
n

[
B(n)

0 + B(n)Xt

]
where B(n) = (0, 1, 0)(I − A∗)−1(I − (A∗)n),

B(n)
0 = nr̄ +

( n−1

∑
i=1

B(i)
)

A∗
0 −

1
2

n−1

∑
i=1

B(i)BB′(B(i))′.

This solution is standard in the literature.

The challenge: extracting forward guidance. Can we use the model solution to identify
f ? Since bond yields are affine in the factors, we should be able to invert for the factor
time series, given data on any three maturities. The setting here is even simpler because
the growth rate and one-period yield (short rate) are observable. So if we have a single
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n-period bond (n > 1), we can use its yield to obtain the state vector as

Xt =

1 0 0
0 1 0
B(n)


−1  gt

rt

ny(n)t −B(n)
0

 .

This expression suggests that f can be obtained via data on bond yields and an estima-
tion of the asset-pricing model.

Unfortunately, this identification logic is incorrect in general. For example, consider
using the transformed state variable X̂t = UXt, where

U =

 1 0 0
0 1 0

ug ur 1

 .

While the subsequent argument works for any transformation U, this particular example
acknowledges that (g, r) are observable and lets the latent factor be a linear combination
of forward guidance with the observables. At the same time, suppose the risk price
vector is π̂t = π̂0 + Π̂X̂t, where π̂0 = π0 and Π̂ = ΠU−1. Then, the SDF is identical to
the original specification (i.e., π̂t = πt) and the risk-neutral dynamics of Xt = U−1X̂t are
identical to the original specification.3

What we have just encountered is a well-known identification issue in affine term-
structure models with latent state variables like our forward guidance variable (Hamil-
ton and Wu, 2012). Without specific knowledge of A, B, or Π, we cannot decide whether
the underlying state vector is Xt or X̂t, as they lead to the same pricing implications. This
non-identification goes beyond our particular example. Indeed, the example above rep-
resents the “best-case scenario” where we know the true model is a three-factor model

3Indeed, the physical dynamics of X̂ := UX are X̂t+1 = (UAU−1)X̂t + (UB)∆Wt+1, so the risk-neutral
dynamics for X̂ are

X̂t+1 = −UBπ̂0 + (UAU−1 − UBΠ̂)X̂t + (UB)∆Ŵ∗
t+1

where ∆Ŵ∗
t+1 := ∆Wt+1 + π̂t is the risk-neutral shock. If π̂0 = π0 and Π̂ = ΠU−1, then risk prices are

π̂t = π̂0 + Π̂X̂t = π0 + ΠU−1UXt = πt.

As a result, the risk-neutral shocks coincide: ∆Ŵ∗
t+1 = ∆W∗

t+1. Thus, the risk-neutral dynamics of X̂ are

X̂t+1 = UA∗
0 + UA∗U−1X̂t + (UB)∆W∗

t+1

These dynamics imply the same risk-neutral dynamics for Xt displayed in (13). One can also easily show
that, as a consequence, the solution for equilibrium bond yields is invariant to the choice of ug and ur.
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with two of the factors observable. Even then, the sole latent factor cannot be identified.
The problem intensifies if the environment is more complex, e.g., if there are additional
latent factors driving bond yields or bond risk premia.

To address the generic non-identification of latent factors, we must effectively make
some assumption about U. A canonical approach starting with Hamilton and Wu (2012)
assumes the state vector X̂ is chosen such that its risk-neutral persistence is a diagonal
matrix. This can be done by implicitly picking U−1 as the matrix of eigenvectors of
A∗ = A − BΠ, since UA∗U−1 is the risk-neutral persistence of X̂. But after making this
choice, only X̂t = UXt is recovered from bond yields, not Xt itself. Without additional
assumptions, bond yields do not reveal particular latent factors.

What can be done in light of the challenges to observing f ? On the one hand, we
are still able to extract X̂ from bond yields, a state vector which spans the same space
as X. This is good enough for the purpose of controlling for the past state: controlling
for X̂τ−1 = UXτ−1 in Procedure 1 instead of Xτ−1 will lead to identical inference for
bh. Thus, we may still recover the desired IRF in principle. On the other hand, failure
to specifically recover f prevents us from constructing its shock z f , which prevents us
from actually implementing Procedure 1 as stated. We must necessarily exclude the
forward-guidance shock z f

τ and so cannot measure any forward-guidance effect.4

Although it is not our focus, excluding z f
τ may also bias estimates of the causal impact

of short-rate shocks. Indeed, note that Cov[zr
τ, z f

τ | Xτ−1] = (0, 1, 0)BB′(0, 0, 1)′. So if we
run Procedure 1 without z f

τ, any correlation between short-rate and forward-guidance
shocks will be impounded into the coefficient on zr

τ.
What solves some issues in the simple baseline model is an assumption that forward-

guidance shocks are orthogonal to short-rate and growth shocks. In other words, if
we assume that the third row of B is proportional to (0, 0, 1), then we can recover f
from bond yields. This is because the unique matrix U that preserves this orthogonality
is U = I, and so X̂ = X is uniquely pinned down by yields. However, even armed
with this orthogonality assumption, we re-encounter difficulties as soon as there are
additional latent factors present. In such case, f is once again unidentified without
additional assumptions.

To summarize so far, pairing bond yields with an asset-pricing model allows us to
identify the causal effect of short rates (potentially with a bias) but generically not the
causal effects of forward guidance. Only in a knife-edge case—where forward-guidance

4A similar critique applies to the VAR approach in place of the Jorda projection. If we fully observed
X, then we would not need to run Jorda projections; we could estimate the VAR directly via time series
regressions, obtain A, and then construct the desired IRF Ah. But if we obtain only X̂ = UX, we would
not recover A and would therefore obtain an incorrect IRF.
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is the unique latent variable and where its correlations with all observable states are
known—can f be identified from bond yields.

Surprises to future short rates: A resolution? Given the impossibility of identifying f ,
hence z f , let us now ask a humbler question: can our asset-pricing model help us identify
belief updates about future short rates rather than forward guidance specifically? In
particular, can we obtain

zr,t
τ := Ẽ[rτ+t | Xτ]− Ẽ[rτ+t | Xτ−1] = (0, 1, 0)ÃtB∆W̃τ (14)

from asset-price data?
Obtaining surprises about future rates is actually good enough for many purposes,

for the following reason. Conditional on Xτ−1, the correlation between zr,0
τ and zr,t

τ is
imperfect:

corr
[
zr,t

τ , zr,0
τ | Xτ−1

]
=

[ÃtBB′]2,2√
[ÃtBB′ Ãt]2,2[BB′]2,2

Unless Ã is a diagonal matrix, which is the uninteresting case where monetary policy
has no effects, this correlation will be below one for t > 0. Therefore, replacing z f

τ

in Procedure 1 with zr,t
τ (for some t > 0) allows us to recover all desired objects: the

coefficients on zr
τ and zr,t

τ will be the short-rate and forward-guidance effects, respec-
tively. Intuitively, there is a two-factor structure to the short-rate path, and so zr

τ and zr,t
τ

pick up different factors. In a richer model with additional latent factors driving short
rates, we may want to include an entire collection (zr,t

τ )T
t=1 of surprises. The fact that

these reduced-form surprises to future rates are “good enough” focuses our attention in
the remainder of the paper on trying to extract the zr,t

τ surprises, rather than forward
guidance per se. For emphasis, we collect this discussion in the following procedure:

Procedure 2. The estimate of (bg
h , br

h, br,t
h ) from the regression

gτ+h = ah + bg
hzg

τ + br
hzr

τ + br,t
h zr,t

τ + c′hXτ−1 + ϵτ+h (15)

is an unbiased and consistent estimator of Dg,z
h .

To implement Procedure 2, we need a proxy for zr,t
τ . If investors are risk-neutral, we

can recover these surprises. Under risk-neutrality, investor marginal utility features zero
risk-pricing (πt + Lt = 0), so the recovered risk-neutral dynamics actually correspond to
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investors’ perceived dynamics:

A∗
0 + A∗Xt = −Bπt + AXt = BLt + AXt = ÃXt.

The risk-neutral shocks B∆W∗
t+1 then coincide with the subjective shocks B∆W̃t+1, and

we can recover the surprises in (14) by the formula

E∗[rτ+t | Xτ]− E∗[rτ+t | Xτ−1] = (0, 1, 0)(A∗)tB∆W∗
τ = zr,t

τ ,

given estimates of A∗ and B. Intuitively, risk-neutrality allows recovery because it im-
plies an “Expectations Hypothesis” but under the investor subjective belief.

A slightly relaxed version of risk-neutrality also permits shock recovery. Assume

Π = −B−1(Ã − A). (16)

Condition (16) says that investor perceived risk prices πt + Lt are time-invariant (the
coefficient on Xt is zero). While time-invariance may seem quite restrictive, it turns out
that it is both necessary and sufficient for identification of B∆W̃ in this model.

To understand sufficiency is fairly easy. Substitute (16) into the risk-neutral dynamics
to obtain

A∗ = A − BΠ = A + BB−1(Ã − A) = Ã.

If we know A∗, then we know Ã, which allows us to obtain perceived shocks as Xt+1 −
ÃXt = B∆W̃t+1. Intuitively, if investor perceived risk prices are constant, then a version
of the Expectations Hypothesis holds: long-term bond yields capture investor beliefs
about future short-term yields, with a constant shifter. The constant shifter is differenced
out when studying belief surprises, rather than belief levels.

Necessity is harder to see. The important fact is that condition (16) is required to
make investor-perceived long-run risk prices constant. To see this, we follow the calcu-
lations in Backus et al. (2022) to compute the permanent component of the investor SDF
S̃ in (12) as

Ht+1

Ht
= exp

[
− 1

2
∥πt + Lt − B′v∥2 − (πt + Lt − B′v) · ∆W̃t+1

]
,

where v := −(I − (Ã − BΠ)′)−1(0, 1, 0)′. In our general environment of Section 3, we
explain this permanent component in more detail, and we show that perceived shock
identification requires Ht+1/Ht to be independent of Xt (under investor beliefs). Taking
that result as given, identification thus requires πt + Lt = π0 + (Π + B−1(Ã − A))Xt to
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be independent of Xt, which translates to condition (16).
As it turns out, this example sneakily permits looser identification conditions than

the more general case covered in Section 3. In particular, we have assumed a very strong
structure where monetary shocks are iid: they happen every period with the same time-
invariant distribution. As our more general model in Section 3 shows, these type of
iid monetary shocks are a knife-edge case without a reasonable intuition. In reality, we
expect monetary policy actions to depend on the state of the economy. Outside of this
knife-edge case of random monetary interventions, shock identification will require the
even stronger condition that Ht+1/Ht be invariant to policy shocks (in our example here,
that is W̃(2)

t+1 and W̃(3)
t+1).

Remark 1 (Risk-neutral shocks). One limitation of our simple three-factor VAR is that, taking
the setup literally, one could get away with using risk-neutral surprises rather than investor’s
perceived surprises. In particular, suppose we obtain

zr,t,∗
τ := E∗[rτ+t | Xτ]− E∗[rτ+t | Xτ−1]

from bond markets and run a modified version of Procedure 2 with zr,t,∗
τ in place of zr,t

τ . If the true
model has (g, r, f ) as the factors, then the modified procedure works—in many cases, we recover
both the short-rate and forward-guidance effects. However, there are two problems we can see.

First, suppose forward guidance has strong risk premium effects in addition to its traditional
role modifying the future short-rate path. For instance, signals of higher future rates may lower
growth but also reduce risks, with an ambiguous resulting impact on long-term bond yields. (A
natural candidate in a richer model would be inflation risks that are tamed by the Fed raising
rates.) To be clear, suppose A∗ is approximately a diagonal matrix; what this means is that
the risk premium effects in BΠ nearly offset the off-diagonal elements of objective transition
matrix A. Bond yields y(n)t will barely reflect forward guidance in this world: the loading B(n)

will have near-zero entries everywhere except for the short-rate entry. In fact, one can verify
that corr[zr,t,∗

τ , zr,0,∗
τ | Xτ−1] = 1 when A∗ is diagonal, so that zr,t,∗

τ provides no additional
information.5

Second, in a more complex model, we view it as preferable to obtain directly the term structure
of investor forecast revisions (zr,t

τ )t>0, as these are closer to structural objects of interest than their
risk-neutral counterparts (zr,t,∗

τ )t>0. In a general K-factor VAR, the risk-neutral and investor

5This offsetting issue is related to the discussion surrounding “unspanned factors” in the term structure
literature (e.g., yields may not contain all information about the SDF as in Cochrane and Piazzesi, 2005;
Andersen and Benzoni, 2010; Duffee, 2011; Joslin et al., 2014).
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forecast revisions differ by

zr,t,∗
τ − zr,t

τ = (0, 1, 0, . . . , 0)
{[

(A∗)t − Ãt]B∆W̃τ + (A∗)tB
[
π0 + ΠXτ−1

]}
.

The second term involving Xτ−1 is irrelevant because the lagged state control in Procedure 2
would effectively eliminate it. But the first term involves the perceived shocks ∆W̃τ and cannot
be controlled. To the extent that A∗ differs from Ã (i.e., if investors are not risk-neutral), the
risk-neutral and investor surprises can load very differently on the underlying shocks. This
discrepancy suggests that Jorda projections onto the risk-neutral surprises can be misleading
about the relative impacts of different policies (e.g., forward-guidance at various horizons).

2.5 Numerical example

To get a sense for the consequences of misspecification, we provide a numerical example
that is roughly calibrated to the evidence in Cieslak (2018). After calibrating, we illustrate
how misspecification wrongly assuming rational expectations impacts the estimated IRF
of growth to a forward-guidance shock.

To calibrate, we mimic Cieslak (2018) and run the following two regressions in the
model:

rt+j = β
(j)
0 + β

(j)
g gt + β

(j)
r rt + residual (17)

Ẽt[rt+j] = β̃
(j)
0 + β̃

(j)
g gt + β̃

(j)
r rt + residual (18)

where Ẽt[rt+j] denotes subjective expectations of interest rates, obtained from the Blue
Chip Financial Forecasts. The results of these regressions, in the data, are presented in
the bottom row of Table 1.

A. Dependent variable rt+j B. Dependent variable Ẽt[rt+j]

j = 1 quarter j = 4 quarters j = 1 quarter j = 4 quarters

β
(1)
g β

(1)
r β

(4)
g β

(4)
r β̃

(1)
g β̃

(1)
r β̃

(4)
g β̃

(4)
r

Model: 0.195 0.902 0.547 0.493 0.145 0.952 0.215 0.746
Data: 0.180 0.880 0.650 0.500 0.100 0.930 0.120 0.840

Table 1. Short-rate forecasts in the model and data. Regressions of future short rates (Panel A) and
survey-based expectations of future short rates (Panel B) on current growth and short rates (gt, rt). The
calibration of B is a diagonal matrix with σg = 0.0025/4, σr = 0.010/4, and σf = 0.050/4. For the “Data”
row, Cieslak (2018) proxies rt by the Federal Funds Rate (with survey expectations obtained from the Blue
Chip Financial Forecasts) and gt by employment growth.
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We set A and Ã in the model to roughly match these empirical results. We calibrate

A =

0.90 −0.05 0
0.50 0.75 0.05

0 0 0.80

 and Ã =

0.90 −0.05 0
0.45 0.80 0.05

0 0 0.99

 . (19)

The comparison between our model and the data is presented in Table 1. The fit, while
not perfect, is good enough to illustrate our main points here. Relative to the econometric
transition matrix, agents perceive a smaller feedback of growth to future short rates, as
well as higher persistences of r and especially of f . The true and perceived dynamics of
short rates in the model, plotted in Figure 1, illustrate the discrepancy between A and
Ã, especially the greater perceived persistence of the forward-guidance shock.

Figure 1. IRFs of short rates to the two monetary shocks. The left panel plots the true IRFs. The right
panel plots the perceived IRFs. The calibrations of A and Ã are given in (19). The calibration of B is a
diagonal matrix with σg = 0.0025/4, σr = 0.010/4, and σf = 0.050/4.

Suppose we have a measure of the forward-guidance surprise z f
τ. What is the impact

of wrongly assuming that z f
τ is an objective shock, i.e., relative to the rational expecta-

tion, instead of a perceived investor surprise? Luckily, in our simple VAR, this question
is easy to answer. If we assume agents hold rational expectations, then we would im-
plement Procedure 1 without controlling for the lagged state Xτ−1. Indeed, rational
expectations imply z f

τ is truly a shock uncorrelated with all past information. On the
other hand, controlling for Xτ−1 corrects for belief distortions and therefore yields the
correct effect of forward guidance. Figure 2 plots the outcomes of these two regressions.
The line labelled “True IRF” comes from correctly implementing Procedure 1, while the
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line labelled “Wrong IRF” comes from forgetting to control for Xτ−1 (and thereby implic-
itly assuming rational expectations when expectations are biased). One notices a large
discrepancy between these measures, so much that even the signs of the effect can be
opposite in the two approaches.

Figure 2. Growth IRFs to forward guidance. Regressions of gτ+t on the forward-guidance shock z f
τ with

and without the lagged state Xτ−1 as a control. The solid curve controls for Xτ−1 and coincides with the
“True IRF.” The dashed curve omits Xτ−1 which yields the “Wrong IRF” and corresponds to assuming
rational expectations. The calibrations of A and Ã are given in (19). The calibration of B is a diagonal
matrix with σg = 0.0025/4, σr = 0.010/4, and σf = 0.050/4.

3 Identifying Monetary Shocks in a Quasi-Linear World

We now consider the question of whether and how to recover investor surprises about fu-
ture interest rates. Our setting, based on Hansen and Scheinkman (2009) and Borovička
et al. (2016), is Markovian and has complete financial markets. We will work in con-
tinuous time, for several reasons. First, continuous time allows us to more naturally
delineate between “typical shocks” that occur all the time and “monetary shocks” that
occur only at specific dates. Second, we can obtain our results even allowing for some
types of nonlinearities in continuous time, which is desirable if we would like to think
not only about expected future interest rates but also rate uncertainty.

19



3.1 General setup

Beliefs. Let the probability measure P represent investor beliefs. Rational expectations
is not assumed: P may or may not coincide with the true objective probability. We work
exclusively in the realm of investors’ subjective beliefs, because our goal when thinking
about shock identification is to identify changes in interest rates relative to the market
beliefs. Since we will never be referencing the objective probability measure, we will
always use (P, E) for investor beliefs rather than the Section 2 notation (P̃, Ẽ).

The econometrician does not know the investor beliefs P. To state the problem of
the econometrician, he wants to learn monetary shocks—which will be policy surprises
relative to P—using only data on asset prices.

States, shocks, and information. There is a stationary n-dimensional economic state X.
The evolution of X is perturbed by two types of shocks. First, there are non-monetary
shocks that occur continuously. Non-monetary shocks are modeled by the increments to
W, which is an n-dimensional Brownian motion under P. We could have included more
of these shocks than state variables, but supposing they are the same number, as in most
empirical applications, will streamline our arguments.6

Second, there are monetary shocks that occur only at specific times. To preserve a
stationary and Markovian structure of our economy, we assume these times arrive ac-
cording to a Poisson process with rate λ(Xt−), which can depend on the state. Whereas
monetary announcement dates are deterministic and known in advance, one can think
of randomness in these dates as capturing announcements during which some surprises
actually occur. Furthermore, during some times of crisis, emergency actions and state-
ments by the central bank can take place. We let Mt be the counter for announcements,
so dMτ = 1 if and only if τ is an announcement date.

At these announcement dates, monetary shocks are modeled by the n-dimensional
vector ξt. This random variable is independent of W and dictates the jump in the state
variable: Xt − Xt− = ξtdMt. Investors’ perceived probability distribution of ξt is allowed
to depend on the state Xt− just prior. For simplicity, assume the mean of ξt is equal to
zero, so that “expected jumps” are implicitly reflected in the drift of Xt.

Subject to these two types of shocks, the state vector evolves as the jump-diffusion

dXt = µ(Xt−)dt + σ(Xt−)dWt + ξtdMt. (20)

The sequence of information sets (Ft)t≥0 available to investors is generated by histories

6Borovička et al. (2016) allow for k > n shocks by adding more observables to the states in X.
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of W, M, ξ, and the initial condition X0. In other words, investors observe (Xt)t≥0.
We will assume the same information set for the econometrician. (Thus, we sidestep
the issue encountered in Section 2 whereby the econometrician would need to recover
observations of Xt from asset prices plus an asset-pricing model.)

Asset prices and the SDF. We assume there exists a stochastic discount factor (SDF)
process S whose increment is given by

dSt

St−
= −r(Xt−)dt − π(Xt−) · dWt + exp[κ(Xt, Xt−)]− 1 − χS(Xt−)dt, (21)

where S0 = 1 and χS(x)dt is the jump compensator.7 The variable r(x) denotes the
short-term interest rate, while π(x) and κ(x′, x) denote risk prices associated to the non-
monetary and monetary shocks (note that κ(x, x) = 0). Using the SDF, the date-t price
of any payoff f (XT) is

E
[ST

St
f (XT) | Xt

]
. (22)

In this environment, Hansen and Scheinkman (2009) show how Perron-Frobenius
Theory can be leveraged to obtain a decomposition of the SDF as

St+T

St
= exp(ηT)

e(Xt)

e(Xt+T)

Ht+T

Ht
. (23)

In (23), exp(η) is a positive eigenvalue of the instantaneous pricing operator; e(·) is the
associated positive eigenfunction; and Ht is a martingale under P. We assume existence
of an SDF decomposition (23). For the purposes of this section, we also assume the
decomposition is unique.8

Equation (23) decomposes the SDF into a deterministic component, a stationary

7More formally, let ν denote the random counting measure such that ν(B, [0, t]) gives the ran-
dom number of jumps in time interval [0, t] having size in the Borel set B. We restrict atten-
tion to processes with a finite number of jumps in any finite time interval. Then, the compen-
sator is the random measure χ(dx′ | x)dt such that for any predictable function g(x, t), the process∫ t

0

∫
Rn g(x′, s)ν(dx′, ds) −

∫ t
0

∫
Rn g(x′, s)χ(dx′ | Xs−)ds is a martingale. With this notation, we define

χS(x) :=
∫ (

exp[κ(x′, x)]− 1
)
χ(dx′ | x).

8See Hansen and Scheinkman (2009) for sufficient conditions on the existence of such a decomposition.
In many cases, uniqueness will not hold. If there are multiple SDF decompositions satisfying (23), we fol-
low Proposition 1 of Borovička et al. (2016) in picking the unique one such that X is stationary and ergodic
under the probability measure PH induced by the martingale H (i.e., defined by PH(A) := E(1A HT) for
all sets A ∈ FT , for any T ≥ 0). For the purposes of this section, non-uniqueness will not be relevant to
the monetary policy questions, which is why we sidestep these issues.
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component, and a permanent component. Some sources of H arising in structural
representative-agent models are the permanent component of aggregate consumption
or continuation value fluctuations in models with Epstein-Zin preferences and persis-
tent growth or stochastic volatility. We flesh out some examples in Section 5. Using
non-parametric methods, Alvarez and Jermann (2005) and Bakshi and Chabi-Yo (2012)
argue that H must play a significant role in pricing.

Reduced-form monetary shocks. Monetary actions perturb this environment at an an-
nouncement date τ through the shocks ξτ = Xτ − Xτ−. The new state vector then feeds
into current and future interest rates. But for our purposes, we will define monetary
shocks directly in terms of their effect on interest rates. First, monetary policy can influ-
ence the short-term interest rate, which is given by r(Xτ). Second, policy can influence
the sequence of future interest rates, namely r(Xτ+T). Obviously, these future interest
rates are random variables: altering future interest rates involves not only modifying
the expected future rate path, but potentially also the entire probability distribution of
future interest rates.

Our reduced-form monetary policy shocks are defined as follows.

Definition 1. Suppose the central bank intervenes at time τ. The short rate shock is given by

z0
τ := r(Xτ)− E[r(Xτ) | Xτ−]. (24)

The shocks to the expected future short rates are given by

zT
τ := E[r(Xτ+T) | Xτ]− E[r(Xτ+T) | Xτ−], T > 0. (25)

The shocks to the distribution of future short rates are given by

pT
τ (r) := P

{
r(Xτ+T) ≤ r | Xτ

}
− P

{
r(Xτ+T) ≤ r | Xτ−

}
, T > 0. (26)

Why do we care about these reduced-form monetary shocks? Motivated by Section 2
(see Procedure 2), regressing future outcomes on both z0

τ and zT
τ , along with controls for

the lagged state Xτ− can potentially identify the causal impact of short rates and forward
guidance, jointly. If there are more dimensions to forward guidance (e.g., guidance at
different horizons), one should include multiple horizons of the expected future short
rate shocks (zT

τ )T>0. If there is guidance about the distribution of future interest rates,
one should consider including additional moments of the distributional shocks (pT

τ )T>0.
To run these procedures, we need to identify these reduced-form shocks.
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Can an econometrician identify the impacts of the central bank on current and fu-
ture interest rates? As mentioned in the introduction and Section 2, let us take as given
the ability to non-parametrically identify the short rate shock. In particular, we observe
the value of r(Xτ) at time τ, and suppose we also observe E[r(Xτ) | Xτ−], presumably
from a financial market (e.g., Fed Funds futures). Implicitly, this assumes risk prices
are sufficiently small for short-horizon interest rates, such that the risk-neutral expec-
tation E∗[r(Xτ) | Xτ−] coincides with the investor expectation. So let us assume z0

τ is
observable.

Turning to zT
τ and pT

τ , we cannot use the same identification logic as with z0
τ. The

financial market still allows us to observe the risk-neutral expectations E∗[r(Xτ+T) |
Xτ] and E∗[r(Xτ+T) | Xτ−], but the presence of risk premia embedded in longer-term
interest rate futures implies E∗ ̸= E when applied to future interest rates. Similarly,
because P∗ ̸= P, we cannot expect the financial market to reveal the shock to the entire
distribution of future short rates in (26).

What do financial markets reveal? Nevertheless, it turns out that zT
τ and pT

τ may some-
times be identified from financial market data. The basic idea, building on Borovička et
al. (2016), is that the martingale H in the decomposition (23) may be used as a change-
of-measure from investor beliefs P to the long-run risk-neutral measure P̂, defined by

P̂(F) := E[1FHt], ∀F ∈ Ft. (27)

It turns out that asset prices reveal this probability measure, as the next lemma verifies.

Lemma 1. The econometrician observes P̂
{

r(Xτ+T) ≤ r | Xτ

}
for every r and every τ, T.

Except under the very particular degenerate situation H ≡ 1, investor beliefs P will
not coincide with the recovered P̂, as explained by Borovička et al. (2016). But our goal
is less ambitious. We do not seek P directly but rather investor surprises or belief shocks.
As long as the gap, in some sense, between P and P̂ remains constant before and after
monetary policy announcements, we may hope that

Ê[r(Xτ+T) | Xτ]− Ê[r(Xτ+T) | Xτ−] = E[r(Xτ+T) | Xτ]− E[r(Xτ+T) | Xτ−], (28)

and similarly for other moments of r(Xτ+T). If equality (28) were to hold, then we would
be done: Lemma 1 proves that the left-hand-side is observable, so we will have inferred
the belief shocks on the right-hand-side.

The key question is which conditions permit this procedure. As we will see, one
critical condition is that policy cannot affect the permanent component of the SDF.
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Definition 2. We say that monetary policy possesses Long-Run Neutrality if

(i) The evolution of d log(Ht) is independent of the monetary shock dMt;

(ii) The evolution of d log(Ht) is independent of the economic state Xt.

Definition 2 specifies neutrality in terms of asset markets, via the martingale H. Con-
dition (i) rules out direct effects of policy on the long-run SDF. Condition (ii) rules out
indirect policy effects, which can be understood as follows. We are imagining a world
in which monetary policy can have real effects and therefore generically affects the state
vector X. In that case, if condition (ii) failed, then policy would indirectly affect Ht+T by
moving Xt. For H to satisfy Definition 2, it must take the form

Ht = exp
[
− 1

2
∥β∥2t − β · Wt

]
(29)

for some n-dimensional vector β. One can interpret β as the constant long-run risk price
associated to non-monetary shocks. (Of course, by condition (i), there is a zero long-run
risk price for monetary shocks.)

In the next two subsections, we illustrate how Long-Run Neutrality sometimes allows
us to identify the shocks in Definition 1. After showing these positive identification
results, we will explain how identification fails in some example environments without
Long-Run Neutrality.

3.2 Exact identification: linear case

To start, we will make several assumptions such that the entire economy is linear. First,
we assume the state dynamics are given by

µ(x) = A0 + Ax (30)

σ(x) = B, (31)

for some n × 1 vector A0, and n × n matrices A and B. Second, we assume that the
short-term interest rate r is a linear function:

r(x) = ρ0 + ρ · x, (32)

for some constant ρ0 and some vector ρ. Assuming (32) holds in a linear environment
with (30)-(31) is tantamount to an assumption on the evolution of S (for example, the
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exponential-affine model of Section 2.4 had affine bond yields). Alternatively, one could
just think that the short rate rt is one of the state variables in Xt.

With linear-Gaussian dynamics and a linear interest rate function, we no longer have
to think about the uncertainties in future rates (captured by pT

τ in Definition 1). The
variance of the future state vector Xt+T, conditional on Xt, is a deterministic function
of T. The same holds for all higher moments of Xt+T. Still, one wonders whether the
forward-guidance shock zT

τ is identified.

Proposition 1. Suppose Long-Run Neutrality holds. Consider the linear environment defined by
(30)-(32). Then, the forward-guidance shocks (zT

τ )T≥0 are identified from asset price data alone.

One may be skeptical that belief shocks can be identified at all. Going back to the
fundamental identification issues raised by Harrison and Kreps (1979), asset prices do
not directly reveal beliefs. More recently, Borovička et al. (2016) argued that beliefs are
only revealed if Ht ≡ 1 is a degenerate martingale. In our context, how is identification is
possible under seemingly weaker assumptions? The key simplification is that our envi-
ronment is linear, whereas these previous papers have tried to argue non-parametrically.
Imposing this stronger assumption on the economic dynamics allows us to weaken the
conditions on H for shock identification.

However, even a linear environment is not enough. An additional simplification is
that Proposition 1 does not seek beliefs directly, but rather surprises or belief shocks. It is
easier to recover belief shocks, because they difference out any unobservable level effect
in beliefs. Indeed, that is exactly what happens in the proof of Proposition 1.

Let us briefly elaborate on the method to identify zT
τ . First, by solving an eigenvalue

problem, one can use asset prices to recover the long-run risk-neutral probability mea-
sure P̂, as demonstrated by Lemma 1. (See also Ross (2015), Borovička et al. (2016), and
Qin and Linetsky (2017) for this result more generally). The dynamics of Xt under P̂ are
the same as those under P, less the constant drift Bβ:

µ̂(x) = µ(x)− Bβ = A0 − Bβ + Ax

While β and A0 are not separately identified, the long-term measure P̂ correctly identi-
fies investors’ perceived persistence A. This turns out to be the critical necessary object
to compute investors’ forecast revisions. By contrast, constant drift distortions like Bβ

play no role in these forecast revisions, because investor forecasts just before and just af-
ter the monetary announcement are both distorted by the same constant. In other words,
the computable object Ê[Xτ+T | Xτ]− Ê[Xτ+T | Xτ−] coincides with the desired investor
forecast revision E[Xτ+T | Xτ]− E[Xτ+T | Xτ−].

25



Ultimately, Proposition 1 is just a generalization of what we observed in our example
in Section 2.4. But it is convenient that we can phrase the result in terms of the Long-Run
Neutrality condition, which will be the center-piece of our emphasis going forward.

3.3 Approximate identification with stochastic volatility

We continue to assume a linear drift (30) and a linear short rate function (32), but we
dispense with homoskedasticity (31). In such a world, the perceived probability distri-
bution of r(Xτ+T) becomes non-trivial (i.e., it is not fully characterized by its mean and
the horizon T). And so we would ideally like to estimate the uncertainty shocks pT

τ in
addition to the forward-guidance shocks zT

τ .
To proceed in this more general environment, we need an extra assumption. Roughly

speaking, we need to assume that the sources of heteroskedasticity are not priced by the
long-run risk-neutral measure. Supposing Long-Run Neutrality holds, so that equation
(29) characterizes the permanent component of the SDF, we assume there exists some
n-dimensional vector β̂ such that

σ(x)β = β̂ for all x. (33)

In other words, there is a zero in each element of β corresponding to a shock with non-
constant volatility. Replacing homoskedasticity assumption (31) with the more general
(33), we are still able to identify the forward-guidance shocks but not the uncertainty
shocks. Formally, we have the following generalization of Proposition 1.

Proposition 2. Suppose Long-Run Neutrality holds. Consider the quasi-linear environment
defined by (30), (32), and (33). Then, the forward-guidance shocks (zT

τ )T≥0 are identified from
asset price data alone.

The key intuition for Proposition 2 is the same as Proposition 1. Indeed, (33) implies
that the drift of Xt under the long-run measure P̂ is

µ̂(x) = µ(x)− σ(x)β = A0 − β̂ + Ax.

As in Proposition 1, investors’ perceived persistence A can be inferred from financial
data, which is the critical necessary object to compute investors’ forecast revisions.

Unfortunately, in the environment considered by Proposition 2, the uncertainty shocks
pT

τ are non-trivial and non-identified. In some applications, we may have a priori rea-
sons to care less about pT

τ . But in situations where uncertainty matters, we will want to
recover pT

τ .
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To make partial progress, we make the following linearity assumption about the form
of the state diffusion:

σ(x)σ(x)′ = ς0ς′0 +
n

∑
i=1

ςidiag(xi)ς
′
i, (34)

where diag(xi) is the diagonal matrix with xi on the main diagonal. The affine approx-
imation in (34) is consistent with standard stochastic volatility models having “square-
root dynamics.” With this structure, we can at least identify shocks to investors’ perceived
variance of future interest rates, even if we cannot recover the entire probability dis-
tribution of r(Xτ+T). (Indeed, one can verify that the same method of proof used in
Proposition 3 does not work for third and higher moments.)

Proposition 3. Suppose Long-Run Neutrality holds. Consider the quasi-linear environment
defined by (30), (32), (33), and (34). Define the variance surprises

vT
τ := Var[r(Xτ+T) | Xτ]− Var[r(Xτ+T) | Xτ−].

Then, (vT
τ )T∈[0,τ′−τ) are identified from asset price data alone, where τ′ is the subsequent mone-

tary announcement date after τ.

Together, Propositions 2-3 demonstrate that a forward-guidance shocks and some
aspects of uncertainty shocks, at least those pertaining to variances, can be obtained
from asset-market data. We require assumptions both on the dynamic evolutions and on
the underlying economic model. The key assumption on the dynamics is quasi-linearity,
with variance dynamics taking a “square-root” form. The critical economic assumption
in all cases is Long-Run Neutrality, along with assumption (33) that volatility shocks
feature zero long-run risk prices.

3.4 Non-identification without Long-Run Neutrality

We now provide some examples to illustrate why shock recovery requires Long-Run
Neutrality. To provide the best possible chance at achieving identification, let us spe-
cialize to the linear setup defined by (30)-(32) in Section 3.2. First, we consider a world
where monetary policy affects H directly (violating condition (i) of Definition 2). Sec-
ond, we consider a world where monetary policy indirectly affects H through its impact
on the state vector X (violating condition (ii) of Definition 2). In either environment,
monetary policy shocks are generally not identified from asset prices alone.
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Direct monetary effects. Consider what happens if dHt is directly impacted by the
monetary shock dMt. For simplicity, suppose the non-monetary shocks Wt do not impact
Ht at all. We will furthermore assume that the jumps in H are log-linear in the jumps in
X. The evolution of Ht then takes the form

dHt

Ht−
= exp[ζ · (Xt − Xt−)]− 1 − χH(Xt−)dt, (35)

for some vector ζ that encodes the long-run risk price of monetary shocks, and where
χH(x)dt is the jump compensator that makes H a martingale.

The crux of the identification issue is that monetary interventions that shift Xt are,
except in a knife-edge case, dependent on the economic state. In our Markov environ-
ment, Ht inherits the shocks to Xt, so state-dependence in monetary shocks translates
into state-dependence in H-shocks, which obfuscates the recovery of belief shocks.

To see the problem, use H to again define the long-run probability measure P̂. The
relation between the drift of Xt under measures P̂ and P is9

µ̂(x) = µ(x) +
∫
(x′ − x)

(
exp[ζ · (x′ − x)]− 1

)
χ(dx′ | x), (36)

where χ is the compensator of the jumps in Xt. The object that is observed from financial
data is µ̂(x). But we would like to recover the persistence matrix A from µ(x) = A0 + Ax.
Such recovery is only possible if the distortion

∫
(x′ − x)

(
exp[ζ · (x′ − x)]− 1

)
χ(dx′ | x)

is a constant independent of x. This constant case arises if and only if both the arrival
rate λ(x) and size of monetary surprises ξt are state-independent. Such a knife-edge
case essentially means monetary policy acts randomly.

Indirect monetary effects. Next, consider what happens if dHt depends on Xt but not
dMt. In this case, rather than the log-normal form (29), Ht takes the form

Ht = exp
[
− 1

2

∫ t

0
∥β(Xs)∥ds −

∫ t

0
β(Xs) · dWs

]
(37)

for some non-constant function β(·) : Rn 7→ Rn. The drift of Xt under the long-run
measure P̂ is given by

µ̂(x) = A0 + Ax − β(x)B.

9Formally, under investor beliefs P, the jumps ξtdMt have conditional mean
∫
(x′ − x)χ(dx′ | x)dt. (Of

course, we have assumed from the beginning that this conditional mean equals zero, but the argument
applies more generally even when this is not the case.) By contrast, under the probability distribution P̂

induced by H, the jumps ξtdMt have conditional mean
∫
(x′ − x) exp[ζ · (x′ − x)]χ(dx′ | x)dt (c.f., Kunita

and Watanabe, 1967, Theorem 6.2). Combining these points leads to formula (36) in the text.
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Although µ̂(x) is observable, we cannot separately distinguish between Ax and β(x)B.
When β(·) was a constant, we could identify A as the persistence of Xt under P̂. Here,
the persistence of Xt differs under P̂ and P, complicating matters.

Investors’ perceived persistence A is the critical determinant of forecast revisions.
Indeed, we have

EXτ [XT]− EXτ− [XT] = Xτ − Xτ− + EXτ [
∫ T

0
µ(Xt−)dt]− EXτ− [

∫ T

0
µ(Xt−)dt]

= Xτ − Xτ− +
∫ T

0
A
(

EXτ [Xt]− EXτ− [Xt]
)

dt. (38)

Equation (38) is a recursive equation for EXτ [XT]− ÊXτ− [XT], but we can only solve it
if we know the value of A. Since we cannot infer A, we cannot solve for these forecast
revisions.

The above suggestive analysis of violating Long-Run Neutrality by either (35) or (37)
can be formalized. We have

Proposition 4. Consider the linear environment defined by (30)-(32). Suppose either (i) dHt

features a contribution from dMt; or (ii) the dynamics dHt depend on Xt. Then, generically, zT
τ

cannot be identified from asset price data.

Whereas Propositions 1-2 demonstrated the sufficiency of Long-Run Neutrality for
identifying forward-guidance shocks in quasi-linear environments, Proposition 4 demon-
strates the corresponding necessity result.

4 Testing Long-Run Neutrality

In this section, we construct a simple non-parametric test of Long-Run Neutrality. This
test builds on insights by Alvarez and Jermann (2005) and Bakshi and Chabi-Yo (2012)
in proxying the permanent and transitory components of the SDF. We then evaluate the
non-parametric test using some numbers from existing studies, followed by our own
novel evidence.

4.1 A non-parametric test

Roughly speaking, Long-Run Neutrality means that long-run risk premia are invariant
to monetary policy. To formalize this, consider two portfolios: (i) an infinite-maturity
bond with return R∞

t,t+∆; and (ii) the growth-optimal portfolio with return R∗
t,t+∆. The
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holding period return on the infinite-maturity bond is given by

R∞
t,t+∆ := lim

T→∞
RT

t,t+∆ = lim
T→∞

E[ ST
St+∆

| Xt+∆]

E[ST
St

| Xt]
= exp(−η)

e(Xt+∆)

e(Xt)
lim

T→∞

E[ 1
e(XT)

HT
Ht+∆

| Xt+∆]

E[ 1
e(XT)

HT
Ht

| Xt]

= exp(−η)
e(Xt+∆)

e(Xt)
, (39)

where the last equality holds if Xt is stochastically stable under the probability measure
generated by H, which we implicitly assume (see footnote 8). On the other hand, the
growth-optimal portfolio return R∗

t,t+∆ is defined as investors’ expectation of the maxi-
mal log return: it is the time-(t + ∆) measurable return R that maximizes E[log(R) | Xt]

subject to E[St+∆
St

R | Xt] = 1, the solution of which is R∗
t,t+∆ = St

St+∆
. Putting these results

together, and using the SDF decomposition (23), the excess return of the growth-optimal
portfolio relative to the infinite-horizon bond is

log(R∗
t,t+∆)− log(R∞

t,t+∆) = log
( Ht

Ht+∆

)
(40)

over any horizon ∆. The result in (40) holds in even more general environments than the
one considered here—for instance, in non-Markovian environments (Qin and Linetsky,
2017). Under condition (i) of Definition 2, the excess return log(R∗

t,t+∆) − log(R∞
t,t+∆)

should be identically zero on monetary announcement days. Under condition (ii) of
Definition 2, the conditional risk premium E[log(R∗

t,t+∆) − log(R∞
t,t+∆) | Xt] should be

time-invariant.
Equation (40) suggests a test: one can examine high-frequency changes in R∗

t,t+∆

and R∞
t,t+∆ around monetary announcements to detect the policy impact on H. As long

as investor beliefs are not singular with respect to the objective probability, invariance
of H to policy under investor beliefs is equivalent to invariance under the objective
measure, justifying this test. (By contrast, it is harder to test the time-invariance of
E[log(R∗

t,t+∆)− log(R∞
t,t+∆) | Xt], because it could be so under investor beliefs but not

under the objective measure.) For example, if we suppose R∞
t,t+∆ is well-approximated by

returns on 30-year Treasuries, and R∗
t,t+∆ is well-approximated by stock market returns,

then Long-Run Neutrality says that monetary policy impacts the stock market and 30-
year Treasuries in an identical way.
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4.2 Existing announcement effect evidence

Following Alvarez and Jermann (2005), suppose R∞
t,t+∆ is well-approximated by returns

on long-term US Treasuries, and R∗
t,t+∆ is well-approximated by US stock market returns.

Then, by piecing together existing evidence from various sources, we can shed light on
the portfolio in (40). Together, this collection of evidence suggests that H responds to
monetary policy.

First, stock returns are significantly higher than long-term bond returns around
FOMC meeting days. In particular, Lucca and Moench (2015) show (for 1994–2011)
that the SPX return was on average 33 bps higher in the 24 hours before the FOMC
announcements, relative to other days. By contrast, Hillenbrand (2021) shows (for 1989–
2021) that 30-year Treasuries returns were approximately 13.8bps to 18.6 bps higher per
day in a 3-day window around the FOMC announcements, relative to other days.10 This
evidence suggests that the average returns on stocks and long-term bonds differ both in
magnitudes and the timing around the FOMC announcements.

Although our focus is primarily on monetary announcements, it is worth review-
ing evidence from a more comprehensive set of macroeconomic announcements. The
broader announcement literature has argued that other macro announcements also in-
duce asset price responses, suggesting that the mechanisms generating announcement
premia around macroeconomic and policy announcements can be related. Using a much
longer sample (1958-2009), Savor and Wilson (2013) report returns on stocks and 30-year
Treasury bonds to be respectively 11.5bps and 4.5bps higher on announcement days. Ad-
ditionally, Savor and Wilson (2014) show in a similar sample (1964-2011) that the CAPM
beta of 30-year Treasuries is 0.14 on announcement days, whereas Long-Run Neutrality
predicts it should be 1.

A parallel strand of research examines asset responses to monetary policy surprises
rather than average announcement returns. This literature relies on surprises identified
from high-frequency short-term interest rate changes around FOMC announcements.
For example, Gürkaynak, Sack and Swanson (2005b) study high-frequency responses
to monetary surprises (during 1990–2004), finding that a 25bp surprise rate cut leads
to 1% SPX return but only a 0.32% 10-year Treasury return. Using an updated 1988–
2019 sample, Bauer, Bernanke and Milstein (2023) find even stronger effects in stocks,
with a 10bps surprise cut associated with a 1% SPX return, although they do not study
long-term riskless bonds.

10We impute this range for the 30-year bond average return using evidence in Hillenbrand (2021) that 30-
year Treasury yields decline between 0.46 bps to 0.62 bps more per day in the 3-day window surrounding
FOMC meetings. We use the duration-approximation log(RT

t,t+∆) ≈ −T(yt+∆ − yt), T = 30.
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4.3 New evidence on Long-Run Neutrality

While suggestive, the evidence from the extant literature does not speak directly to the
Long-Run Neutrality of the Fed-driven news. The samples vary substantially in length,
choice of events windows, and are often inconsistent between equities and bonds, with
little direct evidence on the behavior of long-short equity-bond portfolios. Importantly,
most studies document average asset-specific announcement effects, ignoring higher mo-
ments. Below, we use a consistent sample for equities and long-duration bonds, compare
results for various windows around FOMC announcements, and investigate other mo-
ments of equity-bond portfolios beyond the mean effect.

Following much of the literature, we consider scheduled FOMC decision announce-
ments. The FOMC meets eight times per year on a pre-announced schedule.11 Since
1994, the FOMC has published statements of the policy decisions, and since 2011, the
statements have been followed by press conferences by the Fed Chair, initially every
other announcement, and starting in 2019, after each announcement. Until 2011, state-
ments were released at 14:15 ET. The time changed in 2011, alternating between 12:30
and 14:15 ET, depending on whether the meeting was followed by a press conference.
Currently, statements are published at 14:00 ET, and the press conference is held at 14:30
ET.

We obtain price data at a one-minute frequency on the E-mini S&P 500 futures and the
Treasury bond (T-bond) futures from TickData.com. Our main focus is on the Treasury
futures with a 30-year T-bond as the underlying, the longest maturity available. We refer
to this contract as the 30-year T-bond futures, recognizing that the actual delivery can
take place in bonds with maturities of 15 years and above.12 Our high-frequency sample
starts in September 1997 when the E-mini S&P 500 futures contract was introduced and
runs through December 2023, covering 210 scheduled FOMC announcements and 70
press conferences.

We consider event windows from 24 hours before, narrowly around, and up to 24
hours after the FOMC decision announcements and press conferences. Table 2 summa-
rizes the distribution of log returns of E-mini futures in excess of 30-year T-bond futures
in different windows. The results in Panel A show that equities have done particularly
well in the 24 hours before the FOMC announcement, earning on average 26 bps higher
returns than bonds during the 1997–2023 sample. This result is consistent with, albeit

11In 2020, one scheduled meeting was canceled.
12In January 2009, the CME introduced a new 30-year Treasury bond futures contract, called “Ultra,”

which requires delivery of a bond with at least 25-year maturity. At that time, the range of eligible
maturities for the original or “classic” 30-year T-bond futures was adjusted from a 15–30-year range to a
15–25-year range. Our current analysis focuses on the classic 30-year contract.
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Panel A. Monetary policy decision announcements

N Mean SE(mean) SD Skew Kurtosis

(−24h,−15m) 210 26.0 8.2 118.2 1.8 18.6
(−15m,+15m) 210 -1.3 4.1 59.5 -1.5 11.3
(−15m,+24h) 210 -20.1 12.3 178.2 -0.8 6.0

Panel B. Press conferences

N Mean SE(mean) SD Skew Kurtosis

(−24h,−15m) 70 19.8 9.1 76.1 0.0 3.7
(−15m,+15m) 70 9.4 4.7 39.1 1.2 5.5
(−15m,+60m) 70 2.4 8.2 68.4 0.2 4.3
(+60m,+24h) 70 -43.5 19.2 160.5 -1.0 5.7

Table 2. Summary statistics. The table reports summary statistics for log returns on S&P500 E-mini fu-
tures minus log returns on 30-year Treasury bond futures in various windows around scheduled monetary
FOMC decision announcements and press conferences. A futures “return” in window (t, t + ∆) is defined
as Ft+∆/Ft, where F denotes the futures price. The sample covers FOMC meetings from 1997:09 through
2023:12, with press conferences introduced in 2011.

somewhat weaker than, the original Lucca and Moench (2015) finding based on the
1994–2011 sample. While on average equities performed similarly to bonds in the nar-
row window of ±15 minutes around the announcements, they underperformed bonds
by about 20 bps in the 24 hours after the announcement. Panel B summarizes returns
around press conferences, showing a broadly similar pattern.

The narrow event windows are particularly informative given that the FOMC-driven
news is plausibly the main source of variation in asset prices at those times. The equity-
bond portfolio returns show a volatility of nearly 60 bps in the ±15 minutes window of
the decision announcement and 40 bps in the ±15 around the start of the press confer-
ence, which cover the opening remarks by the Chair. For comparison, the volatility is
27 bps in the ±15-minutes window around 14:00 ET on all other days in the 1997:09–
2023:12 sample, i.e., less than half of that around the FOMC decision announcements.
The insignificant average ±15-minutes announcement return in Table 2 thus masks a
sizeable time variation in returns around announcements. To illustrate that variation,
Figure 3 plots the cumulative equity-bond portfolio returns obtained by summing the
±15 window decision announcement returns across announcements. The cumulative re-
turns show a persistent downward trend in the first half of the sample, reaching −1004
bps at the November 2009 meeting, and from then onward a persistent upward trend
through the end of our sample. Thus, equities underperformed long-term bonds on
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Figure 3. Cumulative returns in a narrow window around FOMC policy announcements. The figure
plots cumulative log returns on a long-short portfolio of S&P 500 E-mini futures in excess of 30-year
Treasury bond futures. The returns are calculated from −15 to +15 minutes around scheduled FOMC
announcements. The sample period covers 210 meetings from 1997:09 through 2023:12.

FOMC announcements from the late 1990s through the first rounds of the quantitative
easing implemented after the global financial crisis but outperformed long-term bonds
afterward through the most recent period.

If the Long-Run Neutrality condition holds, the FOMC-driven news should move
equity and T-bond returns one for one, implying that a regression of T-bond returns on
equity returns should have a slope coefficient (beta) and an R2 both equal to one. Figure
4 shows that these predictions are rejected in the data. Bond-equity betas are statistically
different from one across various windows around decision announcements and press
conferences. While the ±15-minute betas are positive, they are significantly below one,
reaching 0.32 for decision announcements and 0.22 for press conferences, with R2 of
9.9% and 20.1%, respectively. Outside narrow windows, the evidence against Long-Run
Neutrality strengthens further, with even lower R2 and betas becoming negative.

To assess how often the Long-Run Neutrality condition could potentially hold in
our sample, we compute high-frequency betas and R2 using realized covariances and
variances of one-minute equity and T-bond returns in the ±15 window around decision
announcements. The histograms in Figure 5 indicate that 90% of announcements feature
a beta below 0.5 and an R2 below 0.42, again suggesting that the Long-Run Neutrality
most of the time remains violated.

One concern with the results so far is that the bond underlying the 30-year T-bond
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futures contract is a poor proxy for the R∞ return, given that the effective duration of
the underlying is about 15 years on average. Therefore, we perform additional analy-
sis using daily zero-coupon yield curve data regularly updated by the Federal Reserve
(Gurkaynak et al., 2007). The longest reported zero-yield maturity is 30 years, which is
also the maximum maturity issued by the US Treasury. To proxy for the market portfo-
lio, we use the daily CRSP market return from Ken French’s website. We construct the
equity-bond portfolio as the log return on the CRSP market return in excess of the log
return on the 30-year zero coupon bond.

Figure 6, left panel, displays the cumulative return on the equity-bond portfolio in
the three-day window (days −1, 0,+1) around scheduled FOMC announcements. The
sample starts in 1994, when the FOMC began releasing public statements. The choice
of the window is motivated by the finding in Hillenbrand (2021) that Treasury bonds
earn essentially all returns in the three days surrounding the announcement. The right
panel in Figure 6 presents cumulative returns disaggregated by day −1, 0,+1 around the
announcement. To assess the magnitudes, we juxtapose the cumulative FOMC window
returns against the cumulative returns on all other days and scale each by the total
number of days in the respective sample. There are 717 days falling in the three-day
FOMC window and 7108 days falling outside. The last observation along each trajectory
represents the sample average return and is reported on the graph.

The return trajectories indicate that, in economic terms, the equity-bond portfolio
has earned larger (in absolute value) returns in the FOMC window than on all other
days, consistent with the idea that FOMC-driven news is associated with deviations
from the Long-Run Neutrality condition. At the same time, the disaggregated results
in the right panel of Figure 6 reveal a complex interpretation of the directional effect of
the FOMC news in three-day announcement windows, suggesting that the equity-bond
portfolio undergoes regime-like shifts and can switch sign over time and across specific
days. In particular, most of the deviations from neutrality appear in years 2007-2012, but
oppositely on announcement day versus surrounding days. The evidence suggests that
the permanent component of marginal utility falls substantially on announcement days
but rises substantially the day before and after.

The balance of our evidence on the log excess return log(R∗
t,t+∆)− log(R∞

t,t+∆) sug-
gests that monetary Long-Run Neutrality is violated. This violation is visible in the mean
return, in line with the existing literature, but the stronger violations appear in higher
moments: the long-short portfolio displays significant time-variation, and its two legs
co-move weakly in windows surrounding FOMC announcements. Beyond documenting
these higher moments, our analysis also contributes by studying various time windows
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Figure 6. Market-bond portfolio returns, daily frequency. The figure presents cumulative daily close-
to-close log returns on the market portfolio in excess of the 30-year zero-coupon Treasury bond. The
three-day FOMC window comprises days −1, 0, and +1 around the scheduled FOMC announcements.
Cumulative returns are expressed in basis points and scaled by the number of days in a given sample.
The sample runs from 1994:01 through 2023:12. There are 717 days in the three-day FOMC window (239
on each of days −1, 0,+1) and 7108 on all other days outside the three-day FOMC window.

and return frequencies. We uncover several nuanced patterns deserving of further in-
vestigation, such as the reversal around 2009 of the long-short portfolio’s performance in
narrow windows around FOMC, and the opposite performance on announcement day
versus the surrounding days.

5 Examples of H: Interpreting Long-Run Neutrality

We present some example economies in which the SDF S features a permanent com-
ponent H. In each example, we discuss what is meant, economically, by the Long-Run
Neutrality statement “monetary policy does not affect H.” Thus, we can evaluate the
stringency of conditions that allow identification of monetary policy shocks. The exam-
ples in this section are based on Bansal and Yaron (2004), with related analysis in Hansen
and Scheinkman (2009) and Borovička et al. (2016). Generalizing these economies to ex-
plicitly include monetary policy is an interesting avenue for future research.
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5.1 Long-run risk model

Suppose aggregate consumption has the trend-stationary dynamics

log Ct+1 = log Ct + α · (Xt+1 − Xt),

where the state vector Xt follows a stationary VAR(1):

Xt+1 = A0 + AXt + B∆Wt+1, ∆Wt+1 ∼ Normal(0, I).

If investors have subjective beliefs, the same form of these equations hold in reality and
under investor beliefs, but with alternative values of A0.

Suppose the representative investor has recursive preferences as in Kreps and Porteus
(1978) and Epstein and Zin (1989), and unitary elasticity of intertemporal substitution
(EIS). The investor’s continuation value satisfies the following recursion:

Vt = (1 − β) log Ct + β
log Et[exp((1 − γ)Vt+1)]

1 − γ
,

where γ > 1 denotes the investor’s coefficient of relative risk aversion and β is the
subjective discount factor. Guess that the solution is Vt = A0t + v0 + v · Xt, for some
constant v0 and vector v. In that case, one can show that the solution is

v = (I − A′)−1α and v0 = (1 − β)−1[βA0 +
1
2
(1 − γ)v′BB′v].

In this model, the SDF is given by

St+1

St
= β

Ct

Ct+1

exp((1 − γ)v · Xt+1)

E[exp((1 − γ)v · Xt+1) | Xt]

Given that consumption is a trend-stationary process, the permanent component of the
SDF is clearly given by the third piece, i.e.,

Ht+1

Ht
=

exp((1 − γ)v · Xt+1)

E[exp((1 − γ)v · Xt+1) | Xt]
= exp

[
− 1

2
(1 − γ)2v′BB′v + (1 − γ)v′B∆Wt+1

]
.

In this model, if monetary policy shocks do not affect H, then there are two possibilities.
One trivial possibility is that γ = 1 corresponding to log utility, which rules out priced
growth-rate shocks. In that case, Long-Run Neutrality corresponds to the conventional
wisdom that monetary policy does not have a permanent effect on the consumption

38



level, which is hard-wired in this example with trend-stationary consumption.
Alternatively, supposed growth-rate shocks are priced. Then, letting B(i) denote the

ith column of B, Long-Run Neutrality requires v′B(i) = 0 for every shock ∆W(i)
t+1 that

can be impacted by monetary policy. For example, if ∆W(1)
t+1 is the short-rate shock, and

∆W(2)
t+1 is a shock corresponding to forward guidance, then a requirement for identifica-

tion is v′B(1) = v′B(2) = 0. But since the elements of v = (I − A′)−1α are generically
non-zero, the requirement implies that B(i) = 0. In words, identification requires that
growth, in both the short and long run, is invariant to monetary policy.

5.2 Stochastic-volatility model

Consumption has the following dynamics, with stochastic volatility:

log Ct+1 = log Ct + g +
√

Xt∆W(1)
t+1

Xt+1 = µ + a(Xt − µ) + σ
√

Xt∆W(2)
t+1, ∆Wt+1 ∼ Normal(0, I),

where a < 1. As above, the representative investor has Epstein-Zin utility with unitary
EIS. In this model, that means that the SDF takes the form:

St+1

St
= β exp

[
− g − γXt −

1
2

Xt
∣∣( γ

(γ−1)σκ

)∣∣2 −√
Xt

( γ
(γ−1)σκ

)
· ∆Wt+1

]
,

where κ < 0 is the larger root of the quadratic equation 1−γ
2 σ2κ2 + log(β)κ − 1

2 γ = 0.
In this environment, it is easy to verify that the stationary component of the SDF is

characterized by the eigenfunction e(x) = exp(vx), where v is a root of the quadratic
equation 0 = 1

2 σ2v2 − [(γ − 1)σ2κ + (1 − a)]v − γ (the choice of the root is to ensure the
dynamics of Xt are stable under the measure induced by the resulting Ht). Consequently,
the permanent component of this SDF is

Ht+1

Ht
= exp

[
− 1

2

∣∣( γ
(γ−1)σκ−σv

)∣∣2Xt −
√

Xt
( γ
(γ−1)σκ−σv

)
· ∆Wt+1

]
,

Imagine we are not in the knife-edge case where (γ − 1)κ = v. Then, identification of
monetary shocks requires that monetary policy does not affect uncertainty, since uncertainty
affects H. For example, identification requires output growth volatility and stock market
volatility be invariant to monetary actions.

An additional take-away from both of these models is that Long-Run Neutrality and
conventional notions of monetary neutrality can differ. In the first model, consumption
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is trend-stationary, so monetary policy can never impact long-term consumption, even
though it could impact H. In the second model, volatility is stationary, so long-horizon
consumption is fully determined by the level shock; thus, monetary policy could affect
H through volatility without affecting long-term consumption.

6 Final remarks

If researchers do not want to impose rational expectations or risk-neutrality, how can
they use asset prices to recover beliefs of investors? The current frontier of knowledge
suggests this problem has no general solution, except in the degenerate case where
the pricing kernel features no permanent shocks. However, if a researcher more humbly
seeks only to identify shocks to investor beliefs, then identification is possible under weaker
conditions.

We explore such shock identification in the context of monetary policy that can affect
current and future interest rates. In quasi-linear environments (either linear or with
stochastic volatility of the “square-root” form), shock identification is possible provided
a Long-Run Neutrality condition holds: policy must not affect variables that permanently
shift the pricing kernel.

Unfortunately, the evidence on the monetary announcement effect—both from the
existing empirical literature and our own data analysis—suggests Long-Run Neutrality
is violated. Furthermore, in some popular structural models featuring priced news about
growth and uncertainty, Long-Run Neutrality is equivalent to saying monetary policy
does not affect the real economy. Through the lens of these models, identification of
monetary policy effects relies paradoxically on monetary policy having no effects.

We see three important outstanding questions. First, how can researchers identify
investor forecast revisions when asset prices do not? The best option, in our view, is
to leverage survey data on future interest rates, inflation, and the like. Analysis of
survey evidence has been a fruitful and growing area of research, and we see promise
in connecting these survey data with more structural models of monetary policy. Our
framework sheds light on how such survey data should be included in regressions with
short-rate shocks to estimate the effects of monetary policy jointly. At the same time,
our paper effectively assumes a representative agent (and so homogeneous beliefs, or at
least that the relevant set of beliefs for any economic outcome are those of the marginal
investor). Seriously thinking about how belief heterogeneity impacts the identification
of monetary shocks and their effects seems like a promising area for future research in
this direction.
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Second, what really are monetary shocks? Our approach follows most of the em-
pirical literature in measuring shocks as interest rate forecast errors. Several potential
theoretical explanations exist for these forecast errors: e.g., true randomization in rate
setting; uncertain and time-varying interest rate rules; signalling future prospects via
policy; belief disagreements among central bankers and investors. Further developing
these monetary shock microfoundations seems like an important research direction, to
understand whether and how monetary policy has long-term impacts or not (e.g., what
do these stories imply about H), as well as the appropriate procedure for estimating
monetary IRFs.

Third, one can think about generalizing our model to many types of policies that
either make promises or operate through beliefs about the future. To identify the effects
of these interventions, one needs an analogous long-run neutrality condition, and this
is testable by investigating the log excess return log(R∗

t,t+∆) − log(R∞
t,t+∆) at times of

intervention. Is it the case that many other policy interventions besides monetary policy
also impact permanent risks, or not?
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A Proofs
We first prove Lemma 1 regarding what is recovered from asset price data. Then, we prove
Propositions 1-4.

Proof of Lemma 1. Given the Markovian environment, the asset prices in (22) can be repre-
sented by a family of pricing operators (Qt)t≥0 as

[Qt f ](x) = E[St f (Xt) | X0 = x]. (A.1)

The operator Qt is the t-period pricing operator for any claim f that is a function of the Markov
state. In all that follows, we assume we observe Qt (i.e., this is what is meant by “asset price
data” in a complete market environment).

Now, solve the eigenvalue problem

[Qte](x) = exp(ηt)e(x). (A.2)

By the Perron-Frobenius theory, exp(η) > 0 is a positive eigenvalue of limt→0 t−1Qt, and its
associated eigenfunction e is strictly positive. Given Qt is observable, we thus can infer e and η
from data.13

After recovering these objects, we may construct

Ht := exp(−ηt)St
e(Xt)

e(X0)
. (A.3)

Of course, S is not directly observable in data, and so neither is H, but the important point is
that the H in (A.3) is the same one in the decomposition (23) by construction. Note that Ht is a
strictly positive martingale since

E[HT | Ft] =
exp(−ηT)

e(X0)
E[STe(XT) | Ft] =

exp(−ηT)
e(X0)

exp(η(T − t))e(Xt)St = Ht,

by (A.2). Although the construction of P̂ in (27) depends on the unobservable H, note that

P̂
{

r(Xτ+T) ≤ r | Xτ

}
= E

[Hτ+T

Hτ
1{r(Xτ+T)≤r} | Xτ

]
= E

[
exp(−ηT)

Sτ+T

Sτ

e(Xτ+T)

e(Xτ)
1{r(Xτ+T)≤r} | Xτ

]
=

exp(−ηT)
e(Xτ)

[QT ê](Xτ).

Note that ê(x) := e(x)1{r(x)≤r} is a computable payoff as a function of x. Since η, e, and QT are
all also observable, we can observe P̂

{
r(Xτ+T) ≤ r | Xτ

}
from asset price data.

Proof of Proposition 1. This proposition is implied by Proposition 2, since the constant diffu-
sion condition (31) implies the condition (33).

13In a discrete-time model, it would suffice to study the instantaneous pricing operator Q1, since the law
of iterated expectations allows us to apply Q1 in succession t times in order to obtain Qt. In continuous
time, the analogous operator is the instantaneous pricing operator limt→0 Qt/t.
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Proof of Proposition 2. Let mx
t := Ex[Xt] denote the (investor-perceived) conditional mean of

Xt, starting from point x. By applying Itô’s formula to Xt, we have that mx
t solves the differential

equation (since the compensated monetary shock has zero mean)

d
dt

mx
t = Ex[µ(Xt)]

subject to the initial condition mx
0 = x. Specializing to the linear drift from (30), the ODE becomes

d
dt

mx
t = Ex[A0 + AXt] = A0 + Amx

t

This ODE is affine, and the solution takes the well-known form

mx
t = exp(At)

[
x +

∫ t

0
exp(−As)A0ds

]
.

We may then compute
mXτ

t − mXτ−
t = exp(At)(Xτ − Xτ−).

(The interpretation of exp(At) is as the Taylor series ∑∞
k=0

tk

k! Ak.)
Finally, using assumption (33), we have that the drift of Xt under P̂ is Â0 + ÂXt, where

Â0 = A0 − β̂ and Â = A. Since Â is observable (by Lemma 1), we have that A = Â is also
observable. Therefore, mXτ

t − mXτ−
t is observable for all t. By assumption (32), we have obtained

zT
τ = ρ · (mXτ

T − mXτ−
T ).

Proof of Proposition 3. Let mx
t := Ex[Xt] and Vx

t := Ex[(Xt − mx
t )(Xt − mx

t )
′] denote the con-

ditional mean and variance of Xt, starting from point x. A standard result on SDEs (e.g., Chapter
5.5 of Särkkä and Solin, 2019) is that

d
dt

Vx
t = Ex[µ(Xt)(Xt − mx

t )
′] + Ex[(Xt − mx

t )µ(Xt)
′] + Ex[σ(Xt)σ(Xt)

′].

This equation holds at times t that are non-announcement dates. Specializing to the linear drift
from (30) and the square-root assumption on the diffusion (34), we obtain

d
dt

Vx
t = Ex[(A0 + AXt)(Xt − mx

t )
′] + Ex[(Xt − mx

t )(A0 + AXt)
′] + Ex[ς0ς′0 +

n

∑
i=1

ςidiag(u(i) · x)ς′i]

= AEx[Xt(Xt − mx
t )

′] + Ex[(Xt − mx
t )X′

t]A
′ + ς0ς′0 +

n

∑
i=1

ςidiag(u(i) · mx
t )ς

′
i

= AVx
t + Vx

t A′ + ς0ς′0 +
n

∑
i=1

ςidiag(u(i) · mx
t )ς

′
i,

where u(i) is the ith elementary vector. Subject to the initial condition Vx
0 = [0]n×n, this ODE for

Vx
t is a Riccati equation, for which the solution has the well-known form

Vx
t =

∫ t

0
exp(A(t − s))

[
ς0ς′0 +

n

∑
i=1

ςidiag(u(i) · mx
t )ς

′
i

]
exp(A′(t − s))ds.
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Again, this solution holds for any time t prior to the next monetary surprise. We may then
compute

VXτ
t − VXτ−

t =
∫ t

0
exp(A(t − s))

n

∑
i=1

ςidiag
[
u(i) ·

(
mXτ

s − mXτ−
s

)]
ς′i exp(A′(t − s))ds.

By Proposition 2, the object mXτ
s − mXτ−

s is observable. In addition, under assumption (33), we
have A = Â observable. Hence, VXτ

T − VXτ−
T is observable. This is enough, since by assumption

(32), we have vT
τ = ρ′(VXτ

T − VXτ−
T )ρ.

Proof of Proposition 4. Suppose, leading to contradiction, that zT
τ is identified by asset price

data. The same procedure also identifies

ẑT
τ := Ê

[
r(Xτ+T) | Xτ

]
− Ê

[
r(Xτ+T) | Xτ−

]
, T > 0, (A.4)

where the probability measure P̂ is defined in (27). Indeed, Proposition 2 of Borovička et al. (2016)
says that the observable asset prices can be obtained by formula (22) using either (i) probability
measure P and SDF S, or (ii) probability measure P̂ and SDF Ŝ, where

Ŝt := St
H0

Ht
. (A.5)

Therefore, the same asset price data that identify zT
τ also identify ẑT

τ .
Since both zT

τ and ẑT
τ are identified by the same procedure on asset prices, their values must

be identical:

E
[Hτ+T

Hτ
r(Xτ+T) | Xτ

]
− E

[Hτ+T

Hτ−
r(Xτ+T) | Xτ−

]
= E

[
r(Xτ+T)) | Xτ

]
− E

[
r(Xτ+T)) | Xτ−

]
. (A.6)

Using the fact that (A.6) holds for all Xτ and Xτ−, we must have

E
[
HTr(XT) | X0 = x

]
= E

[
r(XT) | X0 = x

]
+ α(T), (A.7)

where α(T) may depend on T but is independent of x.
Now, under both hypotheses (i) and (ii) of the Proposition, it must generically be the case that

dHt depends on Xt−. (Generically, because hypothesis (i) can be consistent with dHt ⊥ Xt− in
the knife-edge case that the announcement arrival rate λ(x) ≡ λ is constant and the probability
distribution of monetary shocks ξt is independent of Xt−.) As a result, the probability distribution
of HT generically depends on X0. Since XT also depends on X0, we have that HT and r(XT) are
generally non-orthogonal.

Based on this discussion, both of

R̂T(x) := E
[
HTr(XT) | X0 = x

]
and RT(x) := E

[
r(XT) | X0 = x

]
are non-constant functions of x for any time horizon T > 0. Furthermore, R̂T(x)−RT(x) depends
on x. This contradicts the fact that α(T) is independent of x. Thus, xT

τ is not identified.
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