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Abstract

Anomaly strategies generate positive and significant CAPM alphas post-publication.

Existing explanations include non-market risks, trading costs, and investment frictions.

This paper introduces a complementary and novel channel: when a new anomaly strat-

egy is published, investors face uncertainty in identifying the optimal weight to allocate

to the anomaly in order to achieve a positive alpha post-publication, making the strat-

egy less appealing. Empirically, we find that the average post-publication alpha of

anomaly strategies is close to zero when optimal weights are estimated out-of-sample

using pre-publication data. This finding is robust across specifications, including those

using empirical Bayesian shrinkage and machine learning to estimate weights. Concep-

tually, this suggests investors have little incentive to add a new anomaly strategy to

their portfolios. While investors can generate positive out-of-sample alphas by combin-

ing multiple anomaly strategies via shrinkage methods, we show the demand from such

investors is insufficient to eliminate alphas in equilibrium.
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Introduction

A major pursuit of asset pricing is to understand the performance of anomaly strategies

(i.e., systematic strategies that generate alpha relative to the CAPM). The number of papers

documenting such strategies has grown significantly over time (Harvey, Liu, and Zhu (2015)).

A key stylized fact is that anomaly strategy returns and CAPM alphas decline but remain

economically strong and statistically significant post-publication (McLean and Pontiff (2016)

and Jensen, Kelly, and Pedersen (2023)). This fact poses a challenge to market efficiency, as

investors should eliminate alphas after learning about them through the publication process.

Three common explanations for the persistence of anomaly performance are (i) anomaly

strategies are exposed to risk factors beyond market risk (Fama and French (1996)), (ii)

little alpha remains after trading costs (Chen and Velikov (2023)), and (iii) frictions pre-

vent investors from eliminating alphas (Shleifer and Vishny (1997)). This paper introduces a

complementary and novel channel: even unconstrained investors who avoid trading costs and

focus on market risk face an estimation challenge that renders anomaly strategies less attrac-

tive. Namely, when a new anomaly strategy is published, investors do not know the optimal

weights to combine it with the market index to obtain a positive alpha post-publication.

The logic underlying our main argument is as follows. The CAPM alpha of an anomaly

strategy reflects the Sharpe ratio increase from optimally combining it with the market

index (Gibbons, Ross, and Shanken (1989)). Standard factor regressions implicitly estimate

this alpha based on ex-post optimal weights, leading to in-sample (IS) alphas (Cederburg

et al. (2020)). So, investors who learn about a new published anomaly would need to know

its post-publication returns to calculate the ex-post optimal weights necessary to harvest

its post-publication IS alpha. Since this is infeasible, we estimate post-publication out-of-

sample (OS) alphas, which are available to investors in real time. They reflect the Sharpe

ratio increase over the post-publication period from combining a given anomaly with the

market index using optimal weights estimated from the relevant pre-publication period.

Our main empirical result can be seen in Figure 1, which is based on 177 anomaly long-

1



Pre-Publication (IS) Post-Publication (IS) Post-Publication (OS)

0%

2%

4%

6%

8%

10%

12%

Av
er

ag
e 

Al
ph

a 
(a

nn
ua

liz
ed

)

(22.11)

(9.43)

(0.38)

Figure 1
Average CAPM Alphas with their t-stats: In-Sample (IS) vs Out-of-Sample (OS)

The bars plot the average CAPM alpha across in-sample (IS) alphas pre- and post-publication
as well as out-of-sample (OS) alphas post-publication. The bootstrap t-statistic for each
average alpha is written on the top of its respective bar. The sample goes from 1926 to
2023 and is based on 177 published equity anomalies from Chen and Zimmermann (2022),
with the pre-publication period ending in December of the publication year. IS alphas are
based on standard CAPM factor regressions whereas OS alphas combine the Gibbons, Ross,
and Shanken (1989) expression for alphas with maximum Sharpe ratio weights from the
pre-publication period and realized returns from the post-publication period (Equation 6).

short decile portfolios obtained from the Chen and Zimmermann (2022) dataset. The first

bar shows that, on average, anomaly strategies deliver substantial IS alphas pre-publication

(consistent with the literature). The second bar shows that the average IS alpha remains

positive and statistically significant over the post-publication period, albeit substantially

smaller than over the pre-publication period (also in line with the literature). The third bar

highlights our main result: the average post-publication OS alpha is relatively close to zero

and statistically insignificant. As such, allocating capital in real time to an anomaly strategy

after its publication has not been as rewarding as the post-publication IS alphas suggest.

The key patterns in Figure 1 are highly robust to empirical implementation decisions. We

show that the average OS alpha is relatively close to zero under alternative approaches for

selecting anomalies, different ways for defining the pre- and post-publication periods, and

alternative methods for constructing the anomaly strategies. OS alphas are also similar if

the out-of-sample optimal weights account for the expected anomaly decay post-publication.
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While our baseline results rely on a standard frequentist estimation of pre-publication

optimal weights, we also explore Bayesian shrinkage for this task. We show that Bayesian

shrinkage can produce OS alphas that are similar to the post-publication IS alphas if the

investor’s prior alpha distribution has some dispersion that is not too narrow nor too wide

(e.g., if the prior cross-sectional standard deviation for annual alphas is around 1%). However,

an empirical Bayesian approach that estimates the prior on the alpha distribution over time

based on the empirical distribution of alphas from previously published anomalies yields

alphas that are too dispersed relative to this benchmark. Consequently, the average empirical

Bayesian OS alpha is relatively close to zero, as in our baseline analysis.

We also explore machine learning methods to estimate pre-publication optimal weights.

Following Davis (2024), we only consider two machine learning methods from the recent

finance literature: the KNS method from Kozak, Nagel, and Santosh (2020) and the BPZ

method from Bryzgalova, Pelger, and Zhu (2024). Applying these methods, we find that OS

alphas remain relatively close to zero on average. While more advanced machine learning

methods might perform better, it is unclear they would help answer our particular research

question. Our goal is to understand why anomaly alphas persist post-publication, and thus

our OS alphas (representing those available to investors) must be out-of-sample not only

in terms of the data used, but also in terms of the technology used. While the KNS and

BPZ methods are also subject to this limitation, they can be written as a standard LASSO

regression (Bryzgalova, Pelger, and Zhu (2024)), which partially alleviates this concern.

The OS alphas of the KNS and BPZ methods do not outperform frequentist OS alphas

because shrinkage and anomaly selection have little impact when combining a single anomaly

with the market portfolio, as required to estimate anomaly OS alphas. However, prior lit-

erature shows that these and related methods can combine multiple anomalies to produce

portfolios with Sharpe ratios well above the market Sharpe ratio out-of-sample (e.g., Kozak,

Nagel, and Santosh (2020), Bryzgalova, Pelger, and Zhu (2024), and Jensen et al. (2025)).

Thus, while the average OS alpha for individual anomalies is relatively close to zero, port-

folios using multiple anomalies can achieve strong positive OS alphas. As such, the market
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may provide an incentive for investors to become “quants” who consider multiple anomalies

simultaneously even if it does not provide an incentive for investors to add single anomalies

to their passive position on the market portfolio (e.g., to become pure momentum traders).

We show that the incentive for investors to become quants does not alter our conclusion

that uncertainty about optimal anomaly weights can generate significant post-publication

IS alphas. Specifically, we model mean-variance investors acting as quants who combine

multiple anomalies with the market portfolio using a BPZ-like strategy to deal with weight

uncertainty. Two channels generate the persistence of post-publication IS alphas. First, as

noted by Bretscher, Lewis, and Santosh (2024), an investor’s relevant risk measure is the

beta relative to their own portfolio. So, quants target alphas relative to the quant wealth

portfolio, not the market wealth portfolio. Second, even if all investors are quants holding

the market portfolio, they trade less aggressively than a mean-variance investor with Full

Information Rational Expectations (FIRE), in line with Davis (2024). This is because quants

apply shrinkage when trading on anomalies, leading to more moderate portfolio weights. As

such, IS alphas persistent even in an equilibrium in which all investors are quants.

In summary, weight uncertainty leads to low average OS alphas on anomaly strategies,

implying investors have little incentive to trade anomalies individually in real time. Weight

uncertainty also implies trading anomalies jointly in real time is only profitable with some

form of shrinkage, as standard in quant investing. However, investors acting as quants are not

aggressive enough to fully eliminate IS alphas, which persist after anomalies are published.

Contribution to the Literature

Our key contribution is to show that the average post-publication OS alpha of anomaly

strategies is relatively close to zero and statistically insignificant. To do so, we construct a

new OS alpha definition based on ex ante estimable weights that investors can allocate to

an anomaly strategy. Our definition is in line with the insight that maximum Sharpe ratio

portfolios (and thus alpha) need to rely on weights estimated from data before the evaluation

period to be out-of-sample (see Cederburg et al. (2020) and Kan, Wang, and Zheng (2024)).
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McLean and Pontiff (2016) show a strong decline in anomaly performance post publication

(see also Chen and Zimmermann (2023) and Chen, Lopez-Lira, and Zimmermann (2023)).

However, anomalies continue to provide a positive and statistically significant average IS

alpha post-publication (Jensen, Kelly, and Pedersen (2023)). In contrast, we find an average

post-publication OS alpha that is close to zero economically and statistically. So, our evidence

complements these papers as investors cannot achieve IS alphas in real time, only OS alphas.

It also explains the persistence of IS alphas since investors are unlikely to “trade away”

anomalies if anomaly strategies do not deliver alphas in real time.

The idea that IS alphas are unavailable to investors in real time is not new. For instance,

Cederburg et al. (2020) use it to explain the performance of volatility-managed portfolios.

Moreover, Kan, Wang, and Zheng (2024) make a related point that the ex-post maximum

Sharpe ratio portfolio obtained from a factor model is not achievable to investors and Chabi-

Yo, Gonçalves, and Loudis (2024) apply this concept to compare their intertemporal factor

model with other models. However, none of these papers link this idea to the factor zoo to

explain why anomalies continue to provide IS alphas post-publication, nor do they distinguish

between pre- and post-publication data. Our contribution relative to these papers lies in

making these connections and introducing an expression to calculate OS alphas.

Distinguishing between pre- and post-publication data avoids publication bias in our OS

tests since the post-publication returns of anomalies are not artificially inflated by the publi-

cation process. However, our point is broader: the intercept estimate from a factor regression

reflects an IS alpha, available only to hypothetical investors with FIRE. Due to weight un-

certainty, real investors rely on statistical methods to choose portfolio weights so that they

achieve OS alphas that are weaker than the respective IS alphas studied in the literature.1

This connects our work to recent studies on statistical limits to arbitrage (e.g., Da, Nagel, and

Xiu (2022), Davis (2024), and Baba Yara, Boyer, and Davis (2024)). Unlike standard limits

1Note that the concept of OS alphas we use is different from ex-ante estimates of future IS alphas (i.e.,
future factor regression intercepts), which are sometimes studied in the literature (e.g., Jensen, Kelly, and
Pedersen (2023) and Marrow and Nagel (2024)). In particular, even if an investor (accurately) forecasts an
anomaly to have a positive future intercept on a CAPM regression, this does not imply that the investor
knows how much to allocate to the anomaly strategy and market portfolio to harvest the anomaly’s alpha.

5



to arbitrage, which arise from frictions in financial markets (Gromb and Vayanos (2010)),

statistical limits to arbitrage reflect statistical difficulties in the investment decision process.

Our paper has a particularly close connection to one paper in this statistical limits to

arbitrage literature. Specifically, Davis (2024) shows that inelastic demand in asset pric-

ing systems (Koijen and Yogo (2019)) arises as an equilibrium outcome when statistical

arbitrageurs use out-of-sample cross-sectional predictability models to construct maximum

Sharpe ratio portfolios. Since these optimal portfolios are not aggressive in trading anomalies

given the observed return data, markets are inelastic. Similarly, we argue that average OS

alphas are relatively close to zero, reducing investor incentives to trade anomalies individu-

ally to harvest alphas. Moreover, the demand from quant investors who combine anomalies

to produce portfolios with positive OS alphas is not aggressive enough to eliminate alphas.

Finally, our work can be understood as a cross-sectional asset pricing analogue to the time-

series point made by Goyal and Welch (2008) (see also Goyal, Welch, and Zafirov (2024)).

In particular, Goyal and Welch (2008) show that most variables that predict time variation

in the equity premium IS do not do so OS. This result is a consequence of the uncertainty

in predictability parameters faced by investors trying to predict the equity premium in real

time. Likewise, we show that anomalies provide a strong average IS alpha, but a close to

zero average OS alpha. Moreover, in line with the parameter uncertainty point of Goyal and

Welch (2008), our result is a consequence of the uncertainty investors face in the optimal

weights needed to combine anomalies and with market index in order to harvest their alphas.

The rest of this paper is organized as follows. Section 1 explains the difference between

IS and OS alphas and discusses our main estimation approach as well as the data we use.

Section 2 provides our main results, which rely on estimating optimal pre-publication weights

using a standard frequentist method. In turn Sections 3 and 4 explore Bayesian shrinkage and

machine learning as alternative approaches for estimating optimal pre-publication weights.

Section 5 presents a model with quant investors who consider multiple anomalies simultane-

ously. Section 6 concludes. The Internet Appendix provides the derivation of the expression

linking alphas to Sharpe ratios as well as supplementary empirical details and results.
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1 Out-of-Sample Alphas: Definition, Estimation, and Data

Subsection 1.1 defines out-of-sample (OS) alphas as the analogue to the usual in-sample

(IS) alphas used in the literature. Subsection 1.2 explains how we estimate OS alphas. And

Subsection 1.3 describes the data we use for the estimation.

1.1 OS Alphas: Definition

We define OS alphas focusing on the CAPM for simplicity. So, all references to “alpha”

refer to CAPM alpha. However, Internet Appendix A generalizes the OS alpha definition to

multifactor models.

Let rm,t be returns on the market portfolio in excess of the risk-free rate and ra,t be long-

short returns on a given anomaly strategy. Also, assume that, for t > T0, they have the

unconditional joint distribution (rm,t, ra,t) ∼ Dist(µ,Σ), with the relation

ra,t = α + β · rm,t + ϵt (1)

In this case, the alpha from Equation 1 can be alternatively written as2

α = sign[w ·∆] · σ[ϵ] ·
√
|SR[rp]2 − SR[rm]2| (2)

where SR[x] = E[x]/σ[x] is the Sharpe ratio function, ∆ = SR[rp] − SR[rm], and rp,t =

(1− w) · rm,t + w · ra,t is the maximum Sharpe ratio portfolio combining rm and ra so that3

ω =

(
1− w
w

)
=

Σ−1µ

|1′Σ−1µ|
(3)

2Equation 2 is a univariate version of the result in Gibbons, Ross, and Shanken (1989) linking pricing
errors to mean-variance efficiency (see also the textbook treatment in Chapter 6.6 of Campbell, Lo, and
MacKinlay (1997)). Internet Appendix A proves a generalization of Equation 2 to multifactor models.

3There are infinitely many maximum Sharpe ratio portfolios, all satisfying ω = θ · Σ−1µ for θ > 0. The
choice of θ does not affect the calculated alphas, as SR[rp] and sign(w ·∆) remain constant for any θ > 0 (see

Equation 2). We use the normalization θ = 1/|1
′

Σ−1µ|, ensuring the absolute sum of ω elements equals one.
Normalizing by θ = 1/(1

′

Σ−1µ), which forces ω elements to sum to one, would be incorrect if 1
′

Σ−1µ < 0, as
it would yield the minimum Sharpe ratio portfolio. Although rare in our empirical analysis, this is possible
if the global minimum variance portfolio has a negative expected excess return. In this case, the tangency
portfolio lies in the inefficient frontier, and the maximum Sharpe ratio portfolio involves a negative position
in the tangency portfolio and a positive position in the risk-free asset.
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An investor with Full Information Rational Expectations (FIRE) knows µ and Σ, and

thus w. As such, FIRE investors can achieve the alpha from Equation 2.4 Consequently, α

is an object of inherent economic interest so that we (researchers) would like to estimate it.

In this context, suppose we observe rm,t and ra,t for t = T0 + 1, T0 + 2, ..., T . We can

consistently estimate α from an Ordinary Least Squares (OLS) regression on Equation 1,

which is equivalent to

αIS = sign[wIS · ∆̂IS] · σ̂[ϵ] ·

√∣∣∣ŜR[rIS,p]2 − ŜR[rm]2
∣∣∣ (4)

where ∆̂IS = ŜR[rIS,p]− ŜR[rm] and rIS,p,t = (1− wIS) · rm,t + wIS · ra,t, with

ωIS =

(
1− wIS

wIS

)
=

Σ−1
ISµIS

|1′Σ−1
ISµIS|

(5)

Our notation attempts to distinguish between two aspects of this estimation process. First,

Sharpe ratios (SR[·]) and idiosyncratic volatility (σ[ϵ]) need to be estimated and we use hats

to denote the respective ex-post moment estimates, which use data over t = T0 + 1, T0 +

2, ..., T . Second, the weight the investor needs to allocate to the anomaly strategy in order

to achieve the given alpha (w) also needs to be estimated, and we use the subscript IS to

identify quantities that depend on this weight estimate (wIS). The reason for this distinction

is that for investors to achieve αIS they need to know wIS at t = T0, but not the quantities

denoted with hats, which they can observe ex-post at t = T .

Consequently, the use of data over t = T0 + 1, T0 + 2, ..., T to obtain wIS makes αIS an

IS quantity, not achievable to real time investors. αIS is still an interesting economic object

as it provides a consistent estimate for α, which is the alpha achievable to FIRE investors

4We should clarify that, in our terminology, the expression “to achieve the alpha” refers to forming a
portfolio that combines the market with the anomaly strategy to achieve the Sharpe ratio increase embedded
in the given alpha expression (in this context, Equation 2). An alternative meaning for “to achieve the alpha”
would be to form the strategy ra,t − β · rm,t, which has zero beta and an expected return equal to the given
alpha. The reason why the former (and not the later) is the relevant economic definition of “to achieve the
alpha” in the context of our analysis is that the goal of the mean-variance investor underlying the CAPM is
not simply to invest in the ra,t − β · rm,t strategy, but rather to obtain the portfolio with maximum possible
Sharpe ratio (and combine it with the risk-free asset given risk aversion). So, an investor who knows β still
would need to estimate the optimal weights to combine ra,t−β ·rm,t with rm,t in order to form the maximum
Sharpe ratio portfolio.
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as T → ∞. However, measuring the alpha available to real time investors requires an OS

estimate for w (i.e., a w estimate using data over t ≤ T0). For this purpose, we define

αOS = sign[wOS · ∆̂OS] · σ̂[ϵ] ·

√∣∣∣ŜR[rOS,p]2 − ŜR[rm]2
∣∣∣ (6)

where ∆̂OS = ŜR[rOS,p]− ŜR[rm] and rOS,p,t = (1− wOS) · rm,t + wOS · ra,t, with

ωOS =

(
1− wOS

wOS

)
=

Σ−1
OSµOS

|1′Σ−1
OSµOS|

(7)

The only difference between αIS and αOS is that αIS uses wIS from Equation 5 (relying on

IS estimates for µ and Σ, which use data over t > T0) whereas αOS uses wOS from Equation

7 (relying on OS estimates for µ and Σ, which use data over t ≤ T0). Our main finding in

this paper is that there is a large decline from αIS to αOS, with the average αOS relatively

close to zero and statistically insignificant.

Figure 2 provides a mean-variance diagram in excess return space that captures the essence

of this empirical finding from a conceptual point of view. The red dot reflects the market

portfolio (rm) while the green dot reflects the anomaly strategy (ra). The blue dot captures

the maximum Sharpe ratio portfolio that can be formed by combining the market portfolio

with the anomaly strategy, rp = (1 − w) · rm,t + w · ra,t. Setting w = wIS maximizes the

in-sample Sharpe ratio (i.e., line slope) increase from the red dot to the blue dot. As such,

setting w = wOS leads to a lower Sharpe ratio increase whether wOS > wIS or wOS < wIS, as

can be seen by comparing the slopes of the blue and orange lines. So, the empirical question

we tackle is not whether alpha decreases as we move from αIS to αOS, but rather by how much

it decreases and how high αOS is. The rest of this section details the data and estimation

procedure we use to identify αIS and αOS in our baseline analysis.

1.2 OS Alphas: Estimation

For each anomaly, we observe returns over t = 1, 2, ..., T0, T0+1, ..., T and we need to measure

αIS and αOS over t = T0+1, T0+2, ..., T . We refer to t = 1, 2, ..., T0 as the“estimation period”

and to t = T0+1, T0+2, ..., T as the “evaluation period”, with the next subsection explaining
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how we select T0 for each anomaly.

For both alphas, we estimate the terms with hats in Equations 4 and 6 (i.e., Sharpe

ratios and idiosyncratic volatility) using the respective sample analogues over the evaluation

period since investors do not need to know these values at t = T0 to achieve αIS or αOS (but

do need their respective weights). The other terms depend on the respective estimates for

w = Σ−1µ/|1
′

Σ−1µ|, with

µ =

[
E[rm]

E[ra]

]
and Σ =

[
Var[rm] Cov[rm, ra]

Cov[rm, ra] Var[ra]

]
(8)

For αIS, we estimate µ and Σ from their respective sample analogues over the evaluation

period, µIS and ΣIS. As such, each anomaly αIS is mathematically equivalent to the OLS

estimate of α from the factor regression in Equation 1 over the evaluation period.

For αOS, we also estimate µ and Σ from their respective sample analogues, but over the

estimation period. That is,

µOS =


 rm =

∑T0
t=1

rm,t

T0

ra =
∑T0

t=1
ra,t

T0


 and ΣOS =


 σ2

m =
∑T0

t=1
(rm,t−rm)2

T0−1
σm,a =

∑T0
t=1

(rm,t−rm)·(ra,t−ra)

T0−1

σm,a =
∑T0

t=1
(rm,t−rm)·(ra,t−ra)

T0−1
σ2
a =

∑T0
t=1

(ra,t−ra)2

T0−1




(9)

so that the resulting wOS is known to investors at t = T0. Consequently, αOS is achievable

to investors who make their portfolio allocation decision at t = T0.

Importantly, there is no mathematical equivalence between αOS and the α from the factor

regression in Equation 1. In particular, αOS is not an ex-ante estimate of the factor regression

intercept α. So, our definition of OS alpha differs from the concept of ex-ante alpha sometimes

studied in the literature (e.g., Jensen, Kelly, and Pedersen (2023) and Marrow and Nagel

(2024)). Our definition focuses on whether investors can achieve the alpha, not whether they

can forecast it. The reason is that even if an investor (accurately) forecasts an anomaly to

have a positive future intercept on a CAPM regression, this does not imply that the investor

knows how much to allocate to the anomaly strategy and market portfolio in order to harvest

the anomaly’s alpha.
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We refer to the αOS estimate defined in this section as the “baseline” or “frequentist” OS

alpha and report its results in Section 2. However, we also explore more sophisticated ways

to estimate µ and Σ out-of-sample. In particular, Section 3 considers Bayesian shrinkage

and Section 4 considers machine learning methods. The empirical details are reported in the

respective sections.

1.3 OS Alphas: Data and Summary Statistics

Measuring αIS and αOS requires us to decide:

1. How to select anomaly signals for the analysis

2. How to form anomaly strategies (long-short portfolios) for the anomaly signals selected

3. How to specify the weight estimation period (i.e., t = 1, 2, ..., T0) and the alpha evalu-

ation period (i.e., t = T0 + 1, T0 + 2, ..., T )

For all three decisions, we rely on the Open Source Asset Pricing (OSAP) dataset from

Chen and Zimmermann (2022).5 In terms of decision (1), we select all anomaly signals in

OSAP that are labeled as “predictors” by its signal documentation. Additionally, we require

anomaly strategies to have at least 5 years of monthly returns available both before and

after the publication year. In regards to decision (2), we form each anomaly strategy as the

long-short decile portfolio with weights as per the original publication. The decile portfolio

return data come directly from the“PredictorAltPorts Deciles”file of OSAP, which uses stock

weighting schemes (typically equal- or value-weighting) from the original papers. Finally, for

decision (3), our sample is monthly and t = T0 reflects December of the publication year for

the given anomaly. Moreover, for each anomaly, t = 1 reflects the first month in the original

publication sample or the first month of anomaly strategy return available in the OSAP

dataset (whichever is later) and t = T reflects the latest month with anomaly strategy returns

5We use the August 2024 version of the OSAP dataset from https://www.openassetpricing.com/.
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available in the OSAP dataset (December 2023 for the vast majority of anomaly strategies).6

Subsection 2.2 shows that our results are robust to the empirical decisions described in this

paragraph.

The OSAP dataset includes 212 anomaly signals labeled as “predictors” in their respec-

tive original samples, with 179 of these signals having monthly anomaly strategy returns

available.7 Our final baseline sample contains the subset of 177 anomalies that also meet

the criteria in the prior paragraph of five years with anomaly strategy return data available

both before and after the publication year. The summary statistics for these 177 anomaly

strategies are reported in Table 1.8 The average publication year is 2004, but the sample

includes anomalies with publication year as early as 1973 and as late as 2016. The average

first year in the publication sample is 1970 while the average first year of available anomaly

strategy return is 1955, highlighting that the OSAP dataset typically contains anomaly strat-

egy returns starting even earlier than the original anomaly publication sample. The average

anomaly strategy has returns for 640 months in the sample we use in our main analysis, and

even the anomaly with the worst coverage has return data for 240 months in this baseline

sample. Most of the return data is from the pre-publication period, with an average of 414

pre-publication months versus 226 post-publication months.

Anomaly portfolios earn positive average returns in all subperiods, but average returns

are generally lower after publication, in line with the results in McLean and Pontiff (2016)

(see also Chen and Zimmermann (2023), Chen, Lopez-Lira, and Zimmermann (2023), and

6Note that we start at the first month in the original publication sample even when anomaly strategy
returns are available in the OSAP dataset for prior months (which is the case for the vast majority of
anomalies). We do so to reflect the data accessible to investors at the time of publication. While data that
starts at the first month of the original publication sample was available to investors, data used in the OSAP
dataset today prior to the start of the original publication sample may not have been available to investors
that easily at the time of publication. Nevertheless, Subsection 2.2 shows that our results are similar if we
always use the first month of anomaly strategy return available in the OSAP dataset.

7The drop from 207 to 179 anomaly signals is because our anomaly strategy returns are based on decile
portfolios, which are not available for all anomalies. For instance, some anomaly signals are discrete variables
taking on less than ten possible values.

8Throughout the paper, we “annualize” performance metrics when reporting statistics by multiplying
average returns and alphas by twelve.
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Jensen, Kelly, and Pedersen (2023)). In contrast, the CAPM market risk premium (β ·E[rm])

is slightly negative on average and shows little change from the pre-publication to the post-

publication period. Consequently, IS alphas strongly decline after publication. Nevertheless,

IS alphas are still positive on average and often economically and statistically significant even

after publication. Our main argument, however, is that these IS alphas are not accessible to

investors, as they would need prior knowledge of the optimal weights required to combine

each anomaly with the market portfolio. Since these weights are unknown, the remainder of

this paper focuses on OS alphas, calculated using weights estimated from the pre-publication

period, making them feasible for investors.

Note that Table 1 reports alpha t-statistics based on Newey and West (1987, 1994), which

are common in the literature, as well as bootstrap t-statistics, with the bootstrap procedure

described in Internet Appendix B. The two procedures yield similar distributions for the

post-publication IS alpha t-statistics in Table 1. They also tend to be similar for individual

anomaly strategies, as Figure IA.1 in the Internet Appendix demonstrates. In the following

sections, we report only bootstrap t-statistics since Newey and West (1987, 1994) cannot be

applied to obtain standard errors for our OS alphas.

2 OS Alphas with Baseline Weight Estimation

This section presents the results from our baseline (or frequentist) estimation of OS alphas.

Subsection 2.1 focuses on the main results while Subsection 2.2 presents a robustness analysis

with respect to our core empirical decisions.

The key result of this section is that while IS alphas are, on average, large and positive over

the post-publication period, OS alphas are, on average, relatively close to zero. Moreover, this

result is driven by a decline in the (ex-post) optimal anomaly weight from the pre-publication

period to the post-publication period.
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2.1 OS Alphas: Main Results

Table 2 provides our main results. The first three rows show the distribution of pre-

publication IS alphas, with their respective t-statistics and optimal weights (i.e., maximum

Sharpe ratio weights). The most interesting observation from these rows is that the median

optimal weight underlying the pre-publication IS alphas is 0.62 so that an investor would

typically need to allocate more than 50% of his portfolio to a given anomaly to achieve

its pre-publication IS alpha. The next three rows show the distribution of IS alphas post-

publication, again with their respective t-statistics and optimal weights. In stark contrast to

the pre-publication period, the median optimal weight is 0.36 so that there is a large decline in

how much investors should allocate to a given anomaly in comparison to the pre-publication

period. While not reported in the table, we also find that the rank correlation (known as

Spearman correlation) between the pre-publication optimal weights and post-publication op-

timal weights is only 0.39.9 So, an anomaly receiving a relatively high optimal weight in the

pre-publication period is not a strong indicator that it should receive a relatively high weight

over the post publication period.10

Our core point is that, at the time of publication, a typical investor does not have a reliable

way to know the optimal weight to hold on a given anomaly strategy over the post-publication

period. As a consequence, the OS alphas, which apply the pre-publication optimal weights

to generate each strategy over the post-publication period, are relatively close to zero on

average (see the next two rows of Table 2). OS alphas for individual anomalies can be large,

but they are of relatively similar magnitude on both sides of the OS alpha distribution. For

instance, the 10% and 90% quantiles of the OS alpha distribution are -8.8% and 12.8%,

9The usual linear correlation (i.e., the Pearson correlation) is even lower at -0.04. However, this low
correlation is due to extreme weights (typically in the post-publication weights). If we bound weights to be
between 0 and 1, then the linear correlation becomes 0.41, which is similar to the rank correlation.

10One may conjecture that an investor applying shrinkage to the pre-publication optimal weight would
reach a weight much closer to the ex-post optimal weight post-publication. Sections 3 and 4 show that this
is not the case using empirical Bayesian and machine learning methods. The investor’s optimal weight would
be substantially reduced if the investor considered shrinkage and multiple anomalies jointly, but Section 5
shows that in this case the weights are not aggressive enough to fully eliminate alphas in equilibrium.
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respectively. Moreover, for most anomalies, these OS alphas are statistically insignificant.11

Figures 3(a) and 3(b) plot the density functions for the post-publication IS alphas and

OS alphas, as well as their respective t-statistics. While only a small fraction of the anomaly

strategies have a negative IS alpha (12.4%), almost half of the anomaly strategies have a

negative OS alpha (47.5%). Similarly, while 49.6% of the IS alphas have a t-stat above 1.64,

only 10.7% of the OS alphas do. In terms of average alphas across all anomalies, their t-stats

are 9.43 for IS alphas and 0.38 for OS alphas (as shown in Figure 1). So, the average IS alpha

is statistically significant while the average OS alpha is not.

Figures 3(c) and 3(d) (as well as the last two rows of Table 2) provide information on

the distribution of IS alphas minus OS alphas (which we refer to as IS-OS alphas) and their

respective t-statistics. By construction, all IS-OS alphas are positive so that the risk-adjusted

return investors face in reality is worse than IS alphas suggest for all anomaly strategies (as

highlighted in the diagram of Figure 2 and related commentary in Section 1.1). Given the

level of uncertainty in alphas, only 20.3% of the IS-OS alphas have a t-stat above 1.64. So,

at a 5% significance level, we can only reject the null of a zero IS-OS alpha in favor of a

positive IS-OS alpha for 20.3% of the anomaly strategies we study. However, the p-value for

the average IS-OS alpha is 6.18%, so we can reject the hypothesis that the average IS-OS

alpha is zero at a 10% level and are close to reject the same hypothesis at a 5% level.12

The results outlined above summarize our key findings. The remainder of the paper ex-

amines the robustness of these results across various empirical choices and then considers

investors who trade on multiple anomalies jointly in Section 5. Some of these empirical

choices are related to implementation (e.g., whether to restrict analysis to anomalies avail-

able throughout the entire sample period), while others have direct economic implications

(e.g., whether to replace pre-publication optimal weights with Bayesian weights, allowing

investors to learn from previously published alphas). In both cases, we focus on OS alphas

11We find that some anomalies have economically and statistically significant OS alphas. However, in-
vestors need to identify these anomalies ex-ante to harvest their alphas. Exploring whether investors can do
that in real time is an interesting avenue for future research.

12Note that, by construction, IS-OS alpha ≥ 0 for each anomaly strategy, and thus the alternative hy-
pothesis in the statistical test is “average IS-OS alpha > 0” and not “average IS-OS alpha ̸= 0”.
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rather than IS-OS alphas, as OS alphas are more relevant from an economic standpoint. In-

vestors do not choose between the ex-post optimal strategy and the ex-ante optimal strategy

(with tradeoff captured by IS-OS alphas). Instead, they face the decision to invest solely in

the market or in the ex-ante optimal strategy that combines the anomaly with the market

(with tradeoff captured by OS alphas). Therefore, from an asset pricing perspective, the

distribution of OS alphas is more relevant than that of IS-OS alphas.

2.2 OS Alphas: Robustness Analysis

In this subsection, we show that our main results are robust to the core implementation

decisions underlying our OS alpha estimates. When doing so, we hold fixed one key economic

decision: the frequentist approach to estimate the optimal weights used in the calculation of

post-publication OS alphas. The next two sections explore alternative methods to estimate

these optimal weights.

We consider sixteen alternative specifications relative to our baseline empirical procedure.

The barplot in Figure 4 reports the resulting average alphas as well as the respective in-

terquartile ranges of the distributions of alphas across anomalies, with the lower and upper

bounds indicating the 25th and 75th percentiles. We sort specifications based on the magni-

tude of their average IS alphas pre-publication and color bars based on whether the average

alpha is statistically significant at the 5% level (blue) or not (orange). As is clear from the

figure, our key finding (summarized in Figure 1) is robust to our empirical decisions. Specif-

ically, the average post-publication IS alpha is economically and statistically significant in

all specifications, albeit much lower than its respective average pre-publication IS alpha. In

contrast, the average post-publication OS alpha is relatively close to zero and statistically

insignificant in all specifications. Moreover, the interquartile range of alphas only contains

positive alpha values for almost all specifications when looking at IS alphas, but always con-

tains both positive and negative alphas when looking at OS alphas. Below, we detail the

specifications considered in Figure 4.

The first group of specifications modifies how we select anomalies for the analysis. The
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objective is to deal with the concern that we may be relying on relatively weak anomalies

either because anomalies are weak to start with or because the sample available for those

anomalies is short. The specification“Clear Predictors”keeps only the 138 anomalies classified

as clear predictors in the OSAP dataset (i.e., anomalies which are clearly treated as predictors

in their original publications). The specification “IS Alpha t-stat ≥ 3” keeps only the 120

anomalies with an IS alpha t-stat above 3.0 in the pre-publication period (based on Newey

and West (1987, 1994)). Specification“10 Years Pre and Post Publication”keeps only the 162

anomalies that have at least 10 years in both the pre-publication and the post-publication

periods. And specification “Returns Available since 1963” keeps only the 115 anomalies that

have anomaly strategy returns available in the OSAP dataset over the entire period from

July 1963 to December 2023 (and uses returns starting in July 1963 for these 115 anomalies

even in cases in which the original publication sample starts after July 1963).

The second group of specifications modifies how we form the estimation period (used to

estimate weights for OS alphas) and the evaluation period (used to calculate the OS alphas).

Specification “Pre-Publication Period ≥ 1992” starts the pre-publication period in January

1992 to avoid estimating pre-publication weights with data that is too stale relative to the

post-publication period (in this case, we keep only the 156 anomalies published at or after

1996). Specification “All Returns Available in OSAP” starts the pre-publication period in

the first month of anomaly strategy return available in the OSAP dataset, which is typically

earlier than the first month in the original publication sample used in our baseline analysis.

Specification “T0 from Last Year of Publication Sample” defines the estimation and evalua-

tion periods based on the last year of the publication sample as opposed to the publication

year. Specification “Account for Alpha Shock in Transition” ends the pre-publication period

one year before the end of the publication sample and starts the post-publication period

three years after the publication date (all months in between are dropped from the analysis).

This analysis accounts for the evidence in Pénasse (2022) that realized returns are abnor-

mally high in the period around the end of the publication sample as well as right after the

publication date (this happens because true alpha declines, inducing an unexpected negative
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shock in discount rates). And specification “Anomalies Even Before Publication” ignores ac-

tual publication dates. Specifically, for each month T0 (from five years after the anomaly’s

first month in OSAP to five years before the anomaly’s last month in OSAP), we estimate the

alphas of all 177 anomaly strategies in our analysis over t = 1, ..., T0 and treat the ones that

have a t-statistic above 2.0 as new anomalies “published” at T0, with their “post-publication”

period covering t = T0, T0 + 1, ..., T .13 As such, the same anomaly can “be published” at

multiple months in this analysis and these months can precede the true publication date of

the anomaly. The OS alphas in this specification are subject to publication bias since the

“post-publication period” here can cover the original publication sample (which would lead

to anomaly returns that are artificially inflated by the publication process tending to select

strong anomalies based on in-sample estimates). However, this analysis is useful in illustrat-

ing that our core point that OS alphas are substantially lower than IS alphas (from factor

regressions) is not restricted to the true post-publication period of anomaly strategies, which

we use in our baseline results to avoid the publication bias issue described above.

The third group of specifications modifies how we form the long-short portfolio returns

used to define anomaly strategies. The “Equal-Weighted Deciles” and “Value-Weighted-

Weighted Deciles” specifications use equal-weighted and value-weighted deciles, respectively,

instead of relying on the same weights used in the original publication (the value-weighted

deciles are available in the OSAP dataset whereas we construct our own equal-weighted

deciles based on OSAP signals because OSAP does not provide these portfolios). The “Orig-

inal Anomaly Portfolios” specification constructs each long-short portfolio using the exact

same procedure as in the original paper instead of using decile portfolios (these anomaly

strategy returns are also available directly in the OSAP dataset). And specifications “Dy-

namic Portfolio Weights, Expanding” and “Dynamic Portfolio Weights, Rolling” follow our

baseline frequentist weight estimation procedure at t = T0, but update the weights each

13In this “Anomalies Even Before Publication” specification, t = 1 reflects the first month of anomaly
strategy return available in the OSAP dataset (not the first month in the original publication sample).
The reason is that this specification implicitly assumes investors evaluate anomaly signals even before their
publication date. So, the original publication sample is irrelevant in the context of this specification.
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month from t = T0 + 1, ..., T − 1 to construct rp,t+1 in the subsequent month. We consider

both an expanding window as well as a 5-year rolling window for the weight estimation.

The final group of specifications allows investors to incorporate anomaly performance

decay in their µ estimates. In particular, they replace the second element of µOS in Equation

9 with rdecaya . In specification “Account for Mu Decay”, we use rdecaya = θ ·ra, where 0 ≤ θ ≤ 1

so that the θ parameter reflects investors’ estimate for the decay in average reutrns after

publication (the baseline analysis effectively imposes θ = 1). The value used for θ varies

by anomaly based on the information investors have on all other anomalies that have been

published as of the time of the given anomaly publication. Specifically, we estimate θ for

a given anomaly (let’s call it anomaly a) as follows. We start by identifying all anomalies

that have been published (with at least five years of returns post-publication) by the end

of the pre-publication period of anomaly a. Then, for each of these anomalies, we calculate

the ratio between their respective average returns over their own post-publication and pre-

publication periods (all within the pre-publication period of anomaly a). Finally, we estimate

the θ for anomaly a using the average of these ratios across all of these other anomalies while

bounding it to be between zero and one. In specification “Account for Alpha Decay”, we

use rdecaya = θ · αa + βa · rm, where again 0 ≤ θ ≤ 1 so that the θ parameter reflects

investors’ estimate for the decay in α after publication (with αa and βa estimated over the

pre-publication period for anomaly a). To obtain θ, we again start by identifying all anomalies

that have been published (with at least five years of returns post-publication) by the end

of the pre-publication period of anomaly a. Then, for each of these anomalies, we calculate

θ = αPost/αPre, where αPost and αPre are estimated, respectively, over the post-publication

and pre-publication periods for the given anomaly (again, within the pre-publication period

of anomaly a). Finally, as before, we estimate the θ for anomaly a using the average of these

ratios across all of these other anomalies while bounding it to be between zero and one.
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3 OS Alphas with Bayesian Weight Estimation

The previous section indicates that while IS alphas remain high in the post-publication

period, OS alphas, on average, are relatively close to zero. This outcome stems from the

fact that the ex-post optimal anomaly weights in the pre-publication period are significantly

higher than those in the post-publication period. So, it is reasonable to expect that a Bayesian

investor might achieve better OS alphas. This is because a Bayesian investor would naturally

adopt more conservative anomaly weights than a frequentist would to deal with the ex ante

uncertainty in the optimal weights needed to achieve a given anomaly’s alpha. Accordingly,

this section examines OS alphas obtained using Bayesian shrinkage. Subsection 3.1 outlines

the Bayesian approach and Subsection 3.2 presents the empirical findings.

The key result of this section is that Bayesian shrinkage applied in real time to estimate

optimal weights does not change our main conclusions regarding OS alphas. We start by show-

ing that Bayesian shrinkage can produce OS alphas that are similar to the post-publication

IS alphas if the investor’s prior alpha distribution has some dispersion that is not too narrow

nor too wide. However, a Bayesian investor would not know ex ante the optimal prior distri-

bution that would generate the highest OS alphas. So, we implement an empirical Bayesian

approach that estimates the prior on the alpha distribution over time based on the empirical

distribution of alphas from previously published anomalies using data available in real time.

This approach yields relatively wide prior alpha distributions over time, implying little alpha

shrinkage. Consequently, the average empirical Bayesian OS alpha is relatively close to zero,

as in our baseline analysis.

3.1 Bayesian Weight Estimation

To apply Bayesian shrinkage when estimating optimal anomaly weights, we consider a simple

1-factor index model, ra,t = α+β ·rm,t+ϵt, which implies the µ and Σ expressions in Equation
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8 can be written as

µ =




E[rm]

α + β · E[rm]


 and Σ =




Var[rm] β · Var[rm]

β · Var[rm] Var[ra]


 (10)

Our Bayesian weight estimation (over the pre-publication period) uses OLS to estimate β

but shrinks α towards zero (i.e., it uses the prior that anomalies have no alpha), effectively

shrinking the anomaly weight towards zero.14 Specifically, we use

αBAY =

(
1/σ2

OLS,α

1/σ2
α + 1/σ2

OLS,α

)
· αOLS (11)

where σOLS,α reflects the standard error of αOLS (estimated by Newey and West (1987, 1994))

whereas σα reflects the prior uncertainty about alpha. In turn, we obtain

µBAY =




rm

αBAY + βOLS · rm


 and ΣBAY =




σ2
m βOLS · σ2

m

βOLS · σ2
m σ2

a


 (12)

and get the (Bayesian) OS anomaly weight by using µBAY and ΣBAY as a replacement for

µOS and ΣOS in Equation 7.

Our empirical analysis explores three arbitrary priors (i.e., three arbitrary values of σα) to

illustrate the quantitative effect of Bayesian shrinkage. However, an investor would need to

select σα for each anomaly using its respective pre-publication sample. We account for that by

using an empirical Bayesian estimator as a fourth specification for σα. Consider an anomaly

with pre-publication sample ending in month T0. We start by collecting all anomalies that

were published up to T0. We then estimate αOLS for each of these anomalies using the sample

ending in T0. Finally, we obtain σα as the standard deviation of αOLS across these anomalies.

14We also consider a simple strategy that allocates 50% of the portfolio to the market index and 50% to
the anomaly strategy. This approach can be thought of as a generic Bayesian method designed to combat
estimation error and often performs better than more complex methods in mean-variance applications with
limited time series (see DeMiguel, Garlappi, and Uppal (2009)). However, in the context of our analysis, it
leads to OS alpha results that are similar to our baseline OS alpha results (reported in Section 2). So, to
conserve space, we do not tabulate the results from this analysis.
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We repeat this process for each anomaly so that σα varies across anomalies based on the

sequence of published anomalies.15

3.2 Bayesian OS Alpha Results

Table 3 and Figure 5 summarize our Bayesian OS alpha results. Panel A and Figure 5(a)

consider an extremely informative prior (σα = 0.1%).16 In this case, the Bayesian optimal

weights are very close to zero. The mean weight is 0.01 and even the 90% quantile of the

weight distribution is only 0.04. Consequently, alphas are very close to zero. In particular,

the mean alpha is 0.6% and no alpha is statistically different from zero. Panel B and Figure

5(b) consider a prior that is still highly informative, but a little less extreme (σα = 1.0%). In

this case, the Bayesian optimal weights are close to the optimal post-publication IS weights.

In particular, the mean weight is 0.33 and the median weight is 0.29. Consequently, the OS

alpha distribution gets closer to the IS alpha distribution. Panel C and Figure 5(b) consider

a moderately informative prior (σα = 5.0%). In this case, the overall results are very similar

to the baseline OS alpha results. In particular, the Bayesian optimal average and median

weights are similar to the pre-publication optimal weights. Consequently, the average and

median OS alphas (2.0% and 2.3%, respectively) are relatively close to the average and

15In untabulated results (that are similar to the reported results), we also consider a Bayesian estimator
that shrinks both α and β toward zero (since each anomaly portfolio is a long-short equity portfolio, it is
sensible to use β = 0 as the benchmark). Specifically, write the regression in Equation 1 as y = Xθ + ϵ,
where θ

′

= [α β]. Then, the Bayesian estimator for θ is given by

θ̂BAY =
(
V −1

o + V −1

OLS

)
−1

·
[
V −1

o θ0 + V −1

OLSθOLS

]

where θ
′

0
= [α0 β0] = [0 0], θOLS = (X

′

X)−1(X
′

y) is the OLS estimate, and VOLS is the covariance matrix
of θOLS (estimated by Newey and West (1987, 1994)). Vo reflects the prior uncertainty about θ, which is
a symmetric matrix with diagonal elements σ2

α and σ2

β , and off-diagonal element σα,β . Similar to our main

Bayesian analysis, we use an empirical Bayesian approach to estimate σ2
α, σ

2

β , and σα,β . Consider an anomaly
with pre-publication sample ending in month T0. We start by collecting all anomalies that were published up
to T0. We then estimate θOLS for each of these anomalies using the sample ending in T0. Finally, we obtain
σα and σβ as the standard deviations of αOLS and βOLS across these anomalies, and σα,β as the sample
covariance between αOLS and βOLS across these anomalies. We repeat this process for each anomaly so that
σ2
α, σ

2

β , and σα,β vary across anomalies based on the sequence of published anomalies.
16As with alpha values, we state σα in annualized alpha units. For instance, our annual σα = 0.1%

corresponds to a monthly σα = 0.1%/12.
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median OS alphas obtained in our baseline analysis (1.1% and 1.6%, respectively).

Clearly, whether a Bayesian investor would experience a distribution of OS alphas that is

similar to that of IS alphas or not depends on the prior used. In reality, a Bayesian investor

would not know the correct prior, but could attempt to infer it from the data on published

anomalies. Our empirical Bayesian approach described in the previous subsection captures

this idea, with results provided in Panel D of Table 3 and Figure 5(d). The key finding is that

the empirical Bayesian approach leads to results that are similar to the moderately informa-

tive prior from Panel C. Specifically, the Bayesian optimal average and median weights are

similar to the pre-publication optimal weights. As such, the average and median of OS al-

phas (1.8% and 1.9%, respectively) are relatively close to the average and median OS alphas

obtained with the moderately informative prior (2.0% and 2.3%, respectively). The reason

is that the average σα from the empirical Bayesian approach is 6.3%, which is similar to

the σα = 5.0% used in the moderately informative prior.17 Consequently, we conclude that

the distribution of OS alphas available to an empirical Bayesian investor is similar to the

distribution of OS alphas available to a frequentist investor.

4 OS Alphas with Machine Learning Weight Estimation

While the prior section captures how a Bayesian investor would estimate optimal anomaly

weights at the end of their respective pre-publication periods, it has the limitation that the

prior distribution of alphas needs to be estimated each year using the available anomalies

data. So, a data-driven machine learning approach addressing the uncertainty in identify-

ing optimal anomaly weights could produce higher OS alphas than the Bayesian shrinkage

approach from the previous section. Thus, in this section, we explore OS alphas using stan-

dard machine learning methods to estimate OS weights. Subsection 4.1 describes the two

17One may conjecture that the high average σα in the empirical Bayesian method is driven by early
anomalies, when the distribution of anomalies was not wide enough for the empirical Bayesian procedure to
reasonably estimate σα. However, this is not the case. In particular, Figure IA.2 in the Internet Appendix
shows that the empirical Bayesian estimates for σα are actually lower in the early periods, when less anomaly
strategies were present. In the more recent years, they are stable at around σα = 7.0%, which is even higher
than the average σα in the empirical Bayesian method.
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machine-learning methods we explore and Subsection 4.2 presents the empirical results.

The key result of this section is that applying machine learning methods developed in

the recent finance literature does not change our main conclusions regarding OS alphas.

Specifically, following Davis (2024), we explore two machine learning methods to compute

portfolio weights (the KNS method from Kozak, Nagel, and Santosh (2020) and the BPZ

method from Bryzgalova, Pelger, and Zhu (2024)).18 We find that the average OS alpha

across anomalies remains relatively close to zero when we apply these methods. As such,

allocating capital in real time to an anomaly strategy after its publication has not been as

rewarding as IS alphas suggest even if one uses recent machine learning methods to estimate

how much to allocate to anomalies post-publication.

4.1 Machine Learning Weight Estimation

The KNS and BPZ methods we explore are cast in the language of Stochastic Discount

Factors (SDFs) since estimating the maximum Sharpe ratio weights of a portfolio is equiva-

lent to estimating the coefficients of a linear SDF. As such, we introduce new notation. Let

ft = [rm, ra] be the vector containing the excess returns on the market index and the given

anomaly strategy. With this f definition, we have E[f ] = µ and Var[f ] = Σ. Then, consider

an SDF given by Mt = 1− b
′

(ft − µ) so that the asset pricing equation E[Mt · ft] = 0 yields

b = Σ−1µ. It is easy to see that the optimal weights in Equation 3 are proportional to b (i.e.,

ω = b/|1
′

b|). Moreover, this b can be equivalently written as the solution to the following

18Although it may be possible for one to design a machine learning method that performs better than the
ones we explore (e.g., by tailoring the machine learning method to recognize the nature of pre-publication vs
post-publication data), it is not obvious that such a more advanced method would help us better understand
the alphas available to investors in real time. The reason is that typical investors are unlikely to have had
knowledge of (or access to) sophisticated machine learning methods historically. Given that our goal is to
measure the alphas that anomalies provide to investors after their publication, our OS alphas should be
out-of-sample not only in terms of the data used, but also in terms of the technology used. While the KNS
and BPZ methods are also subject to this limitation, they can be written as a standard LASSO regression
(Bryzgalova, Pelger, and Zhu (2024)), which partially alleviates this concern since LASSO was introduced
in Tibshirani (1996), ten years before the median publication year of anomalies in our sample.
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optimization problem:

b = argmin
{b}

(µ− Σb)
′

Σ−1(µ− Σb) (13)

The two machine learning methods we explore rely on generalizations of Equation 13. The

first is the KNS method, which uses ωKNS = bKNS/|1
′

bKNS| with

bKNS = argmin
{b}

(µ− Σb)
′

Σ−1(µ− Σb) + λ1 · ||b||1 + λ2 · ||b||2 (14)

while the second is the BPZ method, which uses ωBPZ = bBPZ/|1
′

bBPZ | with

bBPZ = argmin
{b}

((µ+ λ0 · 1)− Σb)
′

Σ−1((µ+ λ0 · 1)− Σb) + λ1 · ||b||1 + λ2 · ||b||2 (15)

These methods are regularization techniques and can be equivalently written as a LASSO

or LARS regression for computational efficiency (see the simplified discussion in Davis

(2024)). For both methods and for each anomaly strategy, we obtain µ and Σ over the

respective pre-publication period using the µOS and ΣOS estimates from Subsection 1.2. We

then follow the prior asset pricing literature (e.g., Gu, Kelly, and Xiu (2020), Bryzgalova,

Pelger, and Zhu (2024), and Davis (2024)) in using a 4-fold cross validation design to se-

lect the hyperparameters (λ1 and λ2 in the case of bKNS and λ0, λ1, and λ2 in the case of

bBPZ).
19 Finally, we combine the µOS and ΣOS values and the selected hyperparameters to

obtain ωKNS = bKNS/|1
′

bKNS| and ωBPZ = bBPZ/|1
′

bBPZ | (from Equations 14 and 15) and

form the respective portfolios that are evaluated over the post-publication period.

To ensure we have enough data for the 4-fold design of the prior paragraph, we restrict

our machine learning analysis to the 151 anomalies that have portfolio return data for at

least 20 years in the pre-publication period (so that each fold has a minimum of 5 years of

19Consider the bKNS estimation for the momentum anomaly. We start by creating a grid for the hy-
perparameters (λ1 and λ2) and splitting the momentum pre-publication period into four contiguous sam-
ples of equal size (known as folds). Then, for each hyperparameter gridpoint, we select one fold, obtain
ωKNS = bKNS/|1

′

bKNS | (from Equation 14) over the three remaining folds (using µOS and ΣOS estimated
over the respective set of three folds), and calculate the Sharpe ratio of the resulting portfolio over the selected
fold. We repeat this process four times (one for each selection of fold) and obtain the average Sharpe ratio
(across the four selected folds) for each hyperparameter gridpoint. Finally, we choose the hyperparameter
gridpoint with the highest average Sharpe ratio. The process is analogous for bBPZ and other anomalies.
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data). The next subsection provides results for these 151 anomalies using the two machine

learning weight estimation methods we consider as well as our baseline weight estimation

method for comparison.

4.2 Machine Learning OS Alpha Results

Table 4 provides our machine learning OS alpha results. Panel A uses our regular weight

estimation but applied to the 151 anomalies used in this machine learning analysis. The

results are similar to what we find in our baseline 177 anomalies, except that OS alphas tend

to be a little lower in this set of anomalies (e.g., the average alpha here is 0.7% in comparison

to 1.1% in our baseline analysis). Panel B provides the results for the KNS method. The

KNS optimal weights are similar to the optimal weights from the frequentist method, with

a mean of 0.61 and a median of 0.63 (in comparison to a mean of 0.63 and a median of 0.64

from Panel A). Consequently, the KNS OS alpha distribution is similar to the frequentist OS

alpha distribution, with an average OS alpha of 0.5% and a median OS alpha of 0.0%. Panel

C provides the results for the BPZ method. The BPZ optimal weights are also similar to the

frequentist optimal weights, with a mean of 0.62 and a median of 0.62. As such, the BPZ

OS alpha distribution also resembles the frequentist OS alpha distribution. In particular, the

average OS alpha is 0.4% and the median OS alpha is 1.0%.

The fact that KNS and BPZ do not improve upon our baseline frequentist weight es-

timation is perhaps not that surprising given our setting. Specifically, these methods are

regularization techniques designed to create an SDF (or maximum Sharpe ratio portfolio)

out of multiple tradable factors. In our setting, we just have two tradable factors (the market

and the given anomaly strategy). Therefore, these methods provide little benefit. We consider

investors who explore multiple anomaly strategies jointly in the next section.
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5 Portfolios with Multiple Anomalies Simultaneously

The prior sections focus on one anomaly at a time by estimating OS alphas of anomaly

strategies individually. This approach tests whether investors who currently hold the market

portfolio (i.e., CAPM investors) have an incentive to deviate by adding an anomaly strategy

to their portfolio. However, it is possible that the OS alpha of a portfolio that combines

multiple anomaly strategies is positive and strong even if this is not the case for the average

OS alpha of individual anomalies.20 The reason is that one may be able to improve on

the out-of-sample weight estimation by applying shrinkage and anomaly selection methods,

which tend to perform better with multiple anomalies considered jointly. In fact, the prior

literature shows that KNS, BPZ, and other related methods can combine multiple anomalies

to produce portfolios with Sharpe ratios well above the market Sharpe ratio out-of-sample

(e.g., Kozak, Nagel, and Santosh (2020), Bryzgalova, Pelger, and Zhu (2024), and Jensen et al.

(2025)). Thus, while the average OS alpha for individual anomalies is relatively close to zero,

portfolios using multiple anomalies can achieve strong positive OS alphas. As such, investors

may have an incentive to become “quants” who consider multiple anomalies simultaneously

to identify optimal weights even though our empirical results indicate that they do not have a

clear incentive to add individual anomalies to their passive position on the market portfolio.

In this section, we show that the incentive for investors to become quants does not alter

our conclusion that weight uncertainty contributes to the persistence of IS alphas post-

publication. In particular, since the results from prior sections show that investors do not

have an incentive to trade on individual anomalies, we build a model in which (a subset

of) investors act as mean-variance quants who simultaneously trade on multiple anomalies.

Importantly, weight uncertainty leads these quants to apply shrinkage to their portfolio

weights. Consequently, we show that their demand is not aggressive enough to eliminate IS

alphas in equilibrium. The model description and results are below.

20Note that there is no difference between the IS alpha of a portfolio and the respective weighted average
of IS alphas of the underlying individual anomaly strategies. However, this is not the case for OS alphas
given that weights need to be estimated out-of-sample.
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There is a representative quant investor (q), who reflects one class of investors. The quant

investor can allocate capital to the (zero net supply) risk-free asset with gross return Rf

and to N risky assets with gross return vector R. The quant investor has mean-variance

preferences so that he forms his wealth portfolio, Rq,t+1 = ω
′

q,t(Rf,t+1, Rt+1), by solving

ωq,t = argmax Eq,t[Rq,t+1] − 0.5 · γ · Varq,t[Rq,t+1] s.t. 1
′

Nωq,t = 1 (16)

Letting rt+1 = Rt+1−1N ·Rf,t+1 be excess returns relative to the risk-free asset for the N risky

assets, we can alternatively write the quant wealth portfolio as Rq,t+1 = Rf,t+1 + ϖ
′

q,trt+1

where ωq,t = [1− 1
′

Nϖq,t , ϖq,t]. Using this structure, the quant investor portfolio allocation

problem can be alternatively written as

ϖq,t = argmax Eq,t[ϖ
′

q,trt+1]− 0.5 · γ · Varq,t[ϖ
′

q,trt+1] (17)

Letting µq,t = Eq,t[r] and Σq,t = Varq,t[r], the solution to the problem in Equation 17 is

the standard mean-variance formula

ϖq,t = (1/γ) · Σ−1
q,tµq,t (18)

Let the data generating process be given by rt+1 ∼ N (µt,Σt). Moreover, let µ̂t and Σ̂t

represent maximum likelihood estimates of µt and Σt given all public information available

in the market at time t. We assume the quant investor acts according to the beliefs µq,t =

µ̂t−λµ · 1N and Σq,t = Σ̂t+λΣ · IN . That is, even though the quant investor has access to all

publicly available information (and thus to the maximum likelihood estimates µ̂t and Σ̂t),

he does not directly use µq,t = µ̂t and Σq,t = Σ̂t. Rather, he shifts the maximum likelihood

estimates towards some benchmark values (zero for µt and an identity matrix for Σt).
21 As

shown in Bryzgalova, Pelger, and Zhu (2024), these are the Bayesian estimates if the investor

21The assumption that the quant investor adjusts his belief relative to the maximum likelihood estimates
can be justified conceptually and empirically. Conceptually, even though maximum likelihood yields the most
efficient unbiased estimate, an important insights from machine learning (also present in empirical Bayesian
methods) is that some biased estimators that rely on shrinkage have large efficiency gains that lead to better
out-of-sample performance. Empirically, investors have no incentive to trade on anomalies in real time using
standard (i.e., unadjusted) mean-variance optimization as it performs poorly out-of-sample (e.g., DeMiguel,
Garlappi, and Uppal (2009)).
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has the prior belief µt ∼ N (λµ ·Σt1N , λΣ ·Σ
2
t ), which is economically reasonable as it implies

higher probability of high Sharpe ratios to principle components with larger eigenvalues.22

Substituting µq,t and Σq,t into Equation 18 yields

ϖq,t = (1/γ) · (Σ̂t + λΣ · IN)
−1(µ̂t − λµ · 1N) (19)

Letting rq,t+1 = ϖ
′

q,trt+1 represent excess returns on the wealth portfolio of the quant

investor, we can isolate µ̂t in Equation 19 to obtain an expression for expected returns:23

µ̂t = γ · Ĉovt[rq, r] + λµ · 1N + λΣ · γ ·ϖq,t (20)

where Ĉovt[rq, r] = Σ̂tϖq,t.

Letting ϖm,t reflect market capitalization weights, the maximum likelihood estimate for

the CAPM alpha is given by

α̂t = µ̂t − β̂t · µ̂m,t (21)

= γ · (Ĉovt[rq, r]− Ĉovt[rq, rm] · β̂t) + λµ · (1N − β̂t) + λΣ · γ · (ϖq,t −ϖ
′

m,tϖq,t · β̂t)

where µ̂m,t = ϖ
′

m,tµ̂t is the market expected return and β̂t = Ĉovt[rm, r]/V̂art[rm] =

Σ̂tϖm,t/ϖ
′

m,tΣ̂tϖm,t is the vector of market betas for the N risky assets.24 So, the investor

expects assets to have CAPM alphas that differ from zero in the future.

22Note that, as shown in Bryzgalova, Pelger, and Zhu (2024), the BPZ objective function in Equation 15
(with λ1 = 0) is equivalent to maximizing Sharpe ratio using µq,t and Σq,t (and reduces to the approach
in Kozak, Nagel, and Santosh (2020) if λµ = 0). We use λ1 = 0 in our model because otherwise the model
is not tractable enough to deliver closed-form expressions for CAPM alphas. With λ1 = 0, the model has
shrinkage, but not anomaly selection. Anomaly selection would further strength our point as it would induce
the quant investor to have zero demand for some anomalies, and thus to not reduce their IS alphas.

23If our model was based on investors who have FIRE, the analogue of Equation 20 would provide an
expression for µt instead of its maximum likelihood estimate, µ̂t. It is easy to see how demand affects µt in
equilibrium since high (low) demand induces high (low) prices, which leads to low (high) µt. A similar logic
applies to µ̂t since it reflects the maximum likelihood estimate based on all publicly available information,
including prices. So, high (low) demand induces high (low) prices, which leads the maximum likelihood
estimator to indicate a low expected return going forward (i.e., a low µ̂t).

24Equation 21 follows directly from α̂t = µ̂t − β̂t · µ̂m,t with

β̂t · µ̂m,t = β̂t ·ϖ
′

m,tµ̂t = γ · Ĉovt[rq, rm] · β̂t + λµ · β̂t + λΣ · γ ·ϖ
′

m,tϖq,t · β̂t

where the second equality uses Equation 20.
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Note that

α̂t =




γ · (Ĉovt[rq, r]− Ĉovt[rq, rm] · β̂t) if λµ = λΣ = 0

λµ · (1N − β̂t) + λΣ · γ · (ϖm,t −ϖ
′

m,tϖm,t · β̂t) if ϖq,t = ϖm,t

(22)

and thus there are two sources of CAPM alpha. First, since the quant investor does not

necessarily hold the market portfolio, the “risk factor” that gets priced by the quant investor

is rq and not rm. This induces α̂t ̸= 0N even if the investor uses no shrinkage (i.e., under

λµ = λΣ = 0). Second, even if the quant investor held the market portfolio in equilibrium so

that ϖq,t = ϖm,t (which would be the case if all active investors were quant investors), we

would still have α̂t ̸= 0N due to λµ ̸= 0 and λΣ ̸= 0. That is, because the investor acts based

on beliefs that reflect shrinkage, he is less aggressive in trading than he would be otherwise,

leaving alphas on the table.

The αIS we study in prior sections is based on realized alphas over a period (the post-

publication period) as opposed to α̂t, which depends on all information available to investors

at time t. To obtain an expression for realized alphas in the model, we add the auxiliary

assumption that the return distribution remains fixed after time t. In this case, the vector

of realized alphas from t+ 1 to t+H is

α = µ− β · µm (23)

where µ = (1/H) · ΣH
h=1rt+h, µm = (1/H) · ΣH

h=1rm,t+h, and β = (ΣH
h=1(rt+h − µ) · (rm,t+h −

µm))/(Σ
H
h=1(rm,t+h − µm)

2). Moreover, the quant investors can forecast these realized alphas

(through α̂t) and still does not eliminate them in equilibrium. Specifically, we have

α = α̂t + εα (24)

where Et[εα] = 0 so that α̂t is an unbiased estimate for α.25

25To derive Equation 24, start by noting that if θ̂ is the maximum likelihood estimate for θ, then f(θ̂) is

the maximum likelihood estimate for f(θ). In our context, this implies α̂t = µ̂t − β̂t · µ̂m,t is the maximum
likelihood estimate for αt = µt−βt ·µm,t, and thus we can write α̂t = αt+uα, where Et[uα] = 0. Then, since
the return distribution remains fixed after time t, we have α = αt+ ϵα, where E[ϵα|Ft] = 0 with Ft reflecting
the information filtration process that includes all public information (which investors know) as well as all
conditional return moments (which the investors do not know). Then, the law of iterated expectations implies
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Thus, alphas persistent even in an economy where quant investors simultaneously allocate

capital to multiple anomalies. The reason is that quant investors need to apply shrinkage

to their portfolio weights in order to deal with the fundamental uncertainty present in the

estimation of anomaly portfolio weights. As a consequence, their demand is not aggressive

enough to eliminate the alphas of anomaly strategies in equilibrium.

6 Conclusion

In this paper, we show that when a new anomaly strategy is published, real time investors

would not know the optimal portfolio weights needed to combine the anomaly strategy with

the market index in order to achieve a positive alpha in the post-publication period. As such,

while the average IS alpha of anomaly strategies is strongly positive post-publication, the

average OS alpha, which relies on pre-publication optimal weights, is relatively close to zero.

Our evidence is robust to various empirical choices, including the use of empirical Bayesian

shrinkage and machine learning methods to estimate pre-publication optimal weights. We

also provide a model that implies that even though investors may achieve positive OS alphas

by trading on multiple anomalies jointly while using shrinkage methods (i.e., by acting as

quants), their demand is not aggressive enough to eliminate alphas.

Combining our empirical results with our model implications, we argue that the following

channel contributes to the persistence of alphas of anomaly strategies over time. The low

average OS alpha of published anomaly strategies implies investors have little incentive to

trade anomalies individually in real time. Moreover, trading anomalies jointly in real time

is only profitable with some form of shrinkage and/or anomaly selection (as is standard

in quant investing) in order to mitigate the inherent uncertainty present in estimating the

optimal weights needed to make investment decisions in real time. However, investors acting

as quants are not aggressive enough to fully eliminate alphas. Consequently, alphas persist

in equilibrium.

Et[ϵα] = Et[E[ϵα|Ft]] = 0, so that α = α̂t + εα, where εα = ϵα − uα satisfies Et[εα] = 0.
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Our findings have implications that are significant for both theory and practice. From a

theoretical perspective, they highlight the importance of writing models in which investors

account for the difficulties in estimating optimal weights when making their portfolio alloca-

tions. In such models, IS alphas that differ from zero can coexist with smart unconstrained

investors. More broadly, for a model to credibly explain the fact that anomaly strategies have

a positive average IS alpha, the model also needs to produce the pattern that their average

OS alpha is close to zero. From a practical perspective, our findings highlight that investors

should evaluate trading strategies based on OS alphas, which cannot be obtained directly

from the typical factor regressions used in the empirical literature (as they yield IS alphas).

Our work also opens the door to new questions. For instance, it would be interesting

to explore the implications of our findings for capital budgeting decisions. In particular,

since expected returns that embed OS alphas capture the true opportunity cost of an equity

investment, one can argue that using OS alphas when estimating cost of equity is appropriate,

in which case the standard CAPM provides a reasonable way to estimate cost of equity. In

contrast, since average realized returns embed IS alphas, one can alternatively argue that

using IS alphas when estimating cost of equity is a better approach, in which case multifactor

models should be used to estimate cost of equity. Exploring this and other related questions

is an interesting avenue for future research.
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Figure 2
Conceptual Relation Between Alphas and Sharpe Ratios

This figure provides a mean-variance diagram in excess return space that reflects the conceptual relation between
alphas and Sharpe ratios. The red dot reflects the market portfolio (rm) while the green dot reflects the anomaly
strategy (ra). The blue dot captures the maximum Sharpe ratio portfolio that can be formed by combining the market
portfolio with the anomaly strategy, rp = (1 − w) · rm,t + w · ra,t. Setting w = wIS maximizes the in-sample Sharpe
ratio (i.e., line slope) increase from the red dot to the blue dot. As such, setting w = wOS leads to a lower Sharpe
ratio increase whether wOS > wIS or wOS < wIS, as can be seen by comparing the slopes of the blue and orange
lines. Section 1.1 provides more details on the relation between alphas and Sharpe ratios, including an analysis of this
mean-variance diagram.
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(a) IS Alphas and OS Alphas (b) t-stats for IS Alphas and OS Alphas
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Figure 3
Distribution of Alphas: Baseline Weight Estimation (Main Results)

This figure contains density plots for the distributions of CAPM alphas and their t-statistics across 177 anomaly
strategies. We form each anomaly strategy as the long-short decile portfolio with weights as per the original publication.
We consider in-sample (IS) alphas and out-of-sample (OS) alphas as well as their differences (IS-OS). IS and OS alphas
differ based on the weights used to combine the anomaly strategy with the market portfolio. IS (OS) alphas use weights
calculated from the post-publication (pre-publication) period to build a portfolio over the post-publication period,
with the pre-publication period ending in December of the publication year. Consequently, IS alphas are equivalent to
intercepts from factor regressions over the post-publication period, but OS alphas are not. The t-statistics are based
on the bootstrap procedure described in Internet Appendix B. Results are based on monthly returns and annualized
(approximately) by multiplying by 12. Section 1 provides more details on alphas while Subsection 2.1 discusses the
results from this figure.
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Figure 4
Average and Interquartile Range of Alpha Distribution Across Anomalies (Robustness Analysis)

This figure contains a barplot that summarizes the results from the different specifications we study in our robustness
analysis (effectively extending Figure 1 to the different specifications we explore). There are three blocks of bars, with
each bar reporting an average alpha. The first block focuses on in-sample (IS) alphas pre-publication, the second block
focuses on IS alphas post-publication, and the third block focuses on out-of-sample (OS) alphas post-publication. The
intervals around each bar correspond to the interquartile range of the alpha distribution across anomalies, with the
lower and upper bounds indicating the 25th and 75th percentiles, respectively. We sort specifications based on the
magnitude of their average IS alphas pre-publication and color bars based on whether the average alpha is statistically
significant at the 5% level (blue) or not (orange). The t-statistics are based on the bootstrap procedure described in
Internet Appendix B. Results are based on monthly returns and annualized (approximately) by multiplying by 12.
Section 1 provides more details on alphas while Subsection 2.2 discusses the results from this figure.
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(a) Extremely Informative Prior (σα = 0.1%) (b) Highly Informative Prior (σα = 1.0%)
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(c) Moderately Informative Prior (σα = 5.0%) (d) Empirical Bayesian Prior (σα = 6.3%)
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Figure 5
Distribution of Alphas: Bayesian Weight Estimation

This figure contains density plots for the distributions of CAPM alphas across 177 anomaly strategies. We form each
anomaly strategy as the long-short decile portfolio with weights as per the original publication. We consider in-sample
(IS) alphas and out-of-sample (OS) alphas. IS (OS) alphas use weights calculated from the post-publication (pre-
publication) period to build a portfolio over the post-publication period, with the pre-publication period ending in
December of the publication year. Consequently, IS alphas are equivalent to intercepts from factor regressions over the
post-publication period, but OS alphas are not. The optimal weights for the OS alphas are constructed using Bayesian
shrinkage with the figure panels varying by the level of prior informativeness. Panels A to C consider different fixed
priors while Panel D considers an empirical Bayesian prior, with the details described in Subsection 3.1. Results are
based on monthly returns and annualized (approximately) by multiplying by 12. Section 1 provides more details on
alphas while Subsection 3.2 discusses the results from this figure.
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(a) Estimating Weights using KNS (Kozak, Nagel, and Santosh (2020))
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(b) Estimating Weights using BPZ (Bryzgalova, Pelger, and Zhu (2024))
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Figure 6
Distribution of Alphas: Machine Learning Weight Estimation

This figure contains density plots for the distributions of CAPM alphas across 151 anomaly strategies. These 151
anomaly strategies reflect the subset of our original 177 anomaly strategies that have return data for at least 20 years
in the pre-publication period. We form each anomaly strategy as the long-short decile portfolio with weights as per
the original publication. We consider in-sample (IS) alphas and out-of-sample (OS) alphas. IS (OS) alphas use weights
calculated from the post-publication (pre-publication) period to build a portfolio over the post-publication period,
with the pre-publication period ending in December of the publication year. Consequently, IS alphas are equivalent to
intercepts from factor regressions over the post-publication period, but OS alphas are not. The optimal weights for the
OS alphas are constructed using Machine Learning methods, with the details described in Subsection 3.1. Following
Davis (2024), we only explore two machine learning methods to compute portfolio weights: the KNS method from
Kozak, Nagel, and Santosh (2020) (in Panel A) and the BPZ method from Bryzgalova, Pelger, and Zhu (2024) (in
Panel B). Results are based on monthly returns and annualized (approximately) by multiplying by 12. Section 1
provides more details on alphas while Subsection 4.2 discusses the results from this figure.
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Table 1
Summary Statistics Across our Baseline 177 Anomaly Strategies

This table reports summary statistics for the baseline sample of 177 anomaly strategies we study, with each anomaly
strategy reflecting a long-short decile portfolio with weights as per the original anomaly publication. The table includes
information on publication years, the first and last year of the publication sample, the first and last year of anomaly
strategy returns available in the OSAP dataset, the number of months in the pre- and post-publication periods, average
returns, CAPM market risk premiums (β ·E[rm]), and in-sample (IS) CAPM alphas. The table also provides t-statistics
for IS alphas, based on both Newey and West (1987, 1994) and the bootstrap procedure described in Internet Appendix
B. These statistics highlight the performance of anomaly portfolios both before and after their publication, emphasizing
changes in returns and alphas over time. Results are based on monthly returns and annualized (approximately) by
multiplying by 12. Section 1 provides more details on alphas while Subsection 1.3 discusses the results from this table.

Mean Median Min Q10% Q25% Q75% Q90% Max

Publication Year 2004 2006 1973 1993 2001 2009 2012 2016

First Year (of Publication Sample) 1970 1970 1926 1962 1963 1979 1986 2002

Last Year (of Publication Sample) 1999 2001 1968 1989 1995 2004 2009 2014

First Year (of Returns Available) 1955 1953 1926 1927 1931 1971 1983 2001

Last Year (of Returns Available) 2023 2023 2013 2023 2023 2023 2023 2023

# of Months

Full Sample 640 642 240 448 534 726 738 1170

Pre-Publication 414 426 106 210 294 522 582 1038

Post-Publication 226 204 84 121 157 264 360 600

Average Return

Full Sample 7.4% 6.1% -4.3% 2.0% 4.0% 9.5% 13.5% 44.5%

Pre-Publication 9.0% 7.6% -4.5% 2.5% 4.6% 11.4% 16.2% 46.3%

Post-Publication 4.5% 3.7% -5.6% -0.7% 1.4% 6.7% 10.3% 41.9%

Full Sample -1.0% -0.6% -9.9% -3.9% -1.8% 0.0% 0.8% 6.6%

β · E[rm] Pre-Publication -0.9% -0.5% -9.5% -3.1% -1.4% 0.1% 0.7% 11.1%

Post-Publication -1.4% -0.7% -14.9% -5.8% -2.5% 0.4% 2.2% 7.4%

IS Alpha

Full Sample 8.4% 7.3% -1.2% 2.0% 4.1% 11.5% 15.9% 47.7%

Pre-Publication 9.9% 8.8% 0.7% 3.0% 5.3% 13.1% 17.2% 47.4%

Post-Publication 5.9% 4.4% -9.7% -0.8% 1.7% 9.4% 14.3% 48.5%

Full Sample (4.23) (3.84) (-0.58) (1.38) (2.58) (5.73) (7.30) (15.2)

IS Alpha t-stat Pre-Publication (4.31) (3.64) (0.23) (1.55) (2.48) (5.73) (7.44) (14.7)

(Newey-West) Post-Publication (1.67) (1.62) (-1.97) (-0.29) (0.56) (2.65) (3.64) (9.42)

Full Sample (4.66) (4.19) (-0.94) (1.64) (2.65) (6.52) (8.15) (16.0)

IS Alpha t-stat Pre-Publication (4.69) (4.20) (0.37) (1.80) (2.63) (6.15) (8.15) (15.7)

(Bootstrap) Post-Publication (1.70) (1.54) (-1.82) (-0.30) (0.58) (2.67) (3.72) (10.4)
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Table 2
Distribution of Alphas: Baseline Weight Estimation (Main Results)

This table reports our main results for the distributions of CAPM alphas and their t-statistics across the 177 anomaly
strategies we study, with each anomaly strategy reflecting a long-short decile portfolio with weights as per the original
anomaly publication. We consider in-sample (IS) alphas and out-of-sample (OS) alphas as well as their differences (IS-
OS). IS (OS) alphas use weights calculated from the post-publication (pre-publication) period to build a portfolio over
the post-publication period, with the pre-publication period ending in December of the publication year. Consequently,
IS alphas are equivalent to intercepts from factor regressions over the post-publication period, but OS alphas are not.
Results are based on monthly returns and annualized (approximately) by multiplying by 12. Section 1 provides more
details on alphas while Subsection 2.1 discusses the results from this table.

Mean Median Min Q10% Q25% Q75% Q90% Max

Pre-Pub

IS Alpha 9.9% 8.8% 0.7% 3.0% 5.3% 13.1% 17.2% 47.4%

IS Alpha t-stat (4.69) (4.20) (0.37) (1.80) (2.63) (6.15) (8.15) (15.75)

Optimal Weight 0.62 0.63 0.15 0.38 0.51 0.76 0.85 1.05

Post-Pub

IS Alpha 5.9% 4.4% -9.7% -0.8% 1.7% 9.4% 14.3% 48.5%

IS Alpha t-stat (1.70) (1.54) (-1.82) (-0.30) (0.58) (2.67) (3.72) (10.4)

Optimal Weight -0.22 0.36 -40.7 -0.17 0.22 0.52 0.63 0.84

OS Alpha 1.1% 1.6% -19.9% -8.8% -5.3% 6.4% 12.8% 29.4%

OS Alpha t-stat (0.15) (0.28) (-2.57) (-1.58) (-1.00) (1.06) (1.65) (6.90)

IS-OS Alpha 4.7% 3.2% 0.0% 0.1% 0.8% 6.1% 12.1% 32.0%

IS-OS Alpha t-stat (0.89) (0.66) (0.00) (0.05) (0.20) (1.56) (1.87) (2.64)

41



Table 3
Distribution of Alphas: Bayesian Weight Estimation

This table reports the results for the distributions of CAPM alphas and their t-statistics across the 177 anomaly
strategies we study, with each anomaly strategy reflecting a long-short decile portfolio with weights as per the original
anomaly publication. We consider out-of-sample (OS) alphas, which use weights calculated from the pre-publication
period to build a portfolio over the post-publication period, with the pre-publication period ending in December of
the publication year. Consequently, OS alphas are not equivalent to intercepts from factor regressions over the post-
publication period. The optimal weights for the OS alphas are constructed using Bayesian shrinkage with the table
panels varying by the level of prior informativeness. Panels A to C consider different fixed priors while Panel D considers
an empirical Bayesian prior, with the details described in Subsection 3.1. Results are based on monthly returns and
annualized (approximately) by multiplying by 12. Section 1 provides more details on alphas while Subsection 3.2
discusses the results from this table.

PANEL A - Extremely Informative Prior (σα = 0.1%)

Mean Median Min Q10% Q25% Q75% Q90% Max

(Bayesian) Optimal Weight 0.01 0.00 0.00 0.00 0.00 0.02 0.04 0.11

OS Alpha 0.6% 0.5% -1.0% -0.1% 0.3% 0.9% 1.3% 3.1%

OS Alpha t-stat (0.68) (0.80) (-1.05) (-0.39) (0.48) (1.04) (1.26) (1.99)

PANEL B - Highly Informative Prior (σα = 1.0%)

Mean Median Min Q10% Q25% Q75% Q90% Max

(Bayesian) Optimal Weight 0.33 0.29 0.00 0.05 0.12 0.52 0.68 0.89

OS Alpha 3.5% 3.1% -9.7% -2.5% 0.7% 6.2% 9.7% 21.1%

OS Alpha t-stat (0.81) (1.03) (-2.25) (-0.86) (0.23) (1.50) (2.08) (7.82)

PANEL C - Moderately Informative Prior (σα = 5.0%)

Mean Median Min Q10% Q25% Q75% Q90% Max

(Bayesian) Optimal Weight 0.58 0.58 0.02 0.28 0.45 0.75 0.84 1.03

OS Alpha 2.0% 2.3% -14.6% -7.0% -4.0% 7.4% 12.7% 29.0%

OS Alpha t-stat (0.29) (0.54) (-2.57) (-1.47) (-0.89) (1.13) (1.97) (6.94)

PANEL D - Empirical Bayesian Prior (σα = 6.3%)

Mean Median Min Q10% Q25% Q75% Q90% Max

(Bayesian) Optimal Weight 0.59 0.60 0.04 0.30 0.48 0.75 0.84 1.04

OS Alpha 1.8% 1.9% -15.2% -7.7% -4.1% 7.2% 12.6% 37.9%

OS Alpha t-stat (0.25) (0.48) (-2.57) (-1.48) (-0.97) (1.11) (1.86) (6.92)
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Table 4
Distribution of Alphas: Machine Learning Weight Estimation

This table reports the results for the distributions of CAPM alphas and their t-statistics across 151 of the anomaly
strategies we study, with each anomaly strategy reflecting a long-short decile portfolio with weights as per the original
anomaly publication. These 151 anomaly strategies reflect the subset of our original 177 anomaly strategies that
have return data for at least 20 years in the pre-publication period. We consider out-of-sample (OS) alphas, which
use weights calculated from the pre-publication period to build a portfolio over the post-publication period, with
the pre-publication period ending in December of the publication year. Consequently, OS alphas are not equivalent
to intercepts from factor regressions over the post-publication period. The optimal weights for the OS alphas are
constructed using Machine Learning methods, with the details described in Subsection 3.1. Following Davis (2024),
we only explore two machine learning methods to compute portfolio weights: the KNS method from Kozak, Nagel,
and Santosh (2020) (in Panel B) and the BPZ method from Bryzgalova, Pelger, and Zhu (2024) (in Panel C). For
comparison, Panel A provides results using our baseline weight estimation applied to the same 151 anomaly strategies.
Results are based on monthly returns and annualized (approximately) by multiplying by 12. Section 1 provides more
details on alphas while Subsection 4.2 discusses the results from this table.

PANEL A - Estimating Weights using our Baseline Method

Mean Median Min Q10% Q25% Q75% Q90% Max

Optimal Weight 0.63 0.64 0.15 0.38 0.53 0.77 0.85 1.05

OS Alpha 0.7% -0.5% -19.9% -9.2% -5.7% 6.1% 11.3% 29.4%

OS Alpha t-stat (0.04) (-0.12) (-2.57) (-1.67) (-1.05) (1.01) (1.61) (6.90)

PANEL B - Estimating Weights using the KNS method (Kozak, Nagel, and Santosh (2020))

Mean Median Min Q10% Q25% Q75% Q90% Max

(ML) Optimal Weight 0.61 0.63 0.00 0.29 0.51 0.74 0.84 1.00

OS Alpha 0.5% 0.0% -19.2% -8.6% -5.2% 5.7% 10.7% 27.6%

OS Alpha t-stat (0.03) (0.00) (-2.41) (-1.50) (-0.94) (0.89) (1.27) (6.75)

PANEL C - Estimating Weights using the BPZ method (Bryzgalova, Pelger, and Zhu (2024))

Mean Median Min Q10% Q25% Q75% Q90% Max

(ML) Optimal Weight 0.62 0.62 0.00 0.38 0.51 0.76 0.84 1.00

OS Alpha 0.4% 0.0% -17.3% -9.4% -4.8% 6.4% 10.0% 19.5%

OS Alpha t-stat (0.04) (0.00) (-2.39) (-1.49) (-1.01) (0.87) (1.26) (6.74)
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Internet Appendix

“Out-of-Sample Alphas Post-Publication”

By Andrei S. Gonçalves, Johnathan A. Loudis, and Richard E. Ogden

This Internet Appendix is organized as follows. Section A derives the equation that links

alphas to Sharpe ratios in the main text. Section B explains our bootstrap procedure used

to estimate alpha standard errors used in the main text.



A Derivation of Alpha Equation

This section derives (a generalization to) Equation 2 in the main text.

Suppose we have the factor model such that

ra,t = α +
K∑

k=1

βk · fk,t + εt (IA.1)

where fk,t reflects the long-short return on the zero-cost tradable factor k and ra,t reflects

the long-short return on a zero-cost tradable strategy (i.e., an anomaly strategy).

Our objective is to derive an expression that connects α to Sharpe ratios. For that, it

is useful to note that a Stochastic Discount Factor (SDF) that perfectly prices all fk,t can

be written as SDFt = a+ b ·
∑K

k=1 wk · fk,t = a+ b · f ∗
t , where wk are the maximum Sharpe

ratio weights (see Chapter 6 in Cochrane (2005)). As such, the α from Equation IA.1 is

identical to the α from equation26

ra,t = α + β · f ∗
t + ϵt (IA.2)

Equation 6.6.17 in Campbell, Lo, and MacKinlay (1997) (originally derived in Gibbons,

Ross, and Shanken (1989)) shows that the α from Equation IA.2 satisfies

α2

Var[ϵ]
= SR[r∗p]

2 − SR[f ∗]2 (IA.3)

where r∗p,t = w · ra,t + (1 − w) · f ∗
t represents the ex-post maximum Sharpe ratio portfolio

that can be formed with ra,t and f ∗
t . Consequently, we have

|α| = σ[ϵ] ·
√
SR[r∗p]

2 − SR[f ∗]2 (IA.4)

Since r∗p,t is the ex-post maximum Sharpe ratio portfolio that can be formed with f ∗
t and

rt, we have ∆ = SR[r∗p]− SR[f ∗] ≥ 0, with this inequality holding with equality if and only

if α = 0. Moreover, α > 0 (α < 0) implies w > 0 (w < 0). Consequently, Equation IA.4 can

26Note that the residual terms in Equations IA.1 and IA.2 differ so that the idiosyncratic volatility (and
consequently R2 values) differ between the two equations. For our purpose, it only matters that the alphas
are the same.

IA.2



be alternatively written as

α = sign[w ·∆] · σ[ϵ] ·
√∣∣SR[r∗p]2 − SR[f ∗]2

∣∣ (IA.5)

Note that if rm,t is the only factor (i.e., f ∗
t = rm,t), then Equation IA.5 becomes

α = sign[w ·∆] · σ[ϵ] ·
√

|SR[rp]2 − SR[rm]2| (IA.6)

where rp,t = w · ra,t + (1− w) · rm,t so that we have Equation 2 in the main text.

Note also that the coefficient of determination of the factor model in Equation IA.2 is

given by Cor[ra, f
∗]2 = 1− Var[ϵ]/Var[ra], implying

σ[ϵ] = σ[ra] ·
√

1− Cor[ra, f ∗]2 (IA.7)

While we do not directly use Equation IA.7 in the main text, it is useful in highlighting

that σ[ϵ] is a simple function of the ra volatility and the correlation between ra and f ∗.

B Bootstrap Procedure for Standard Errors

In the main text, we use bootstrap standard errors for alphas. This section describes our

bootstrap procedure.

For the bootstrap standard errors associated with a given anomaly strategy, we proceed as

follows. We sample (with replacement) months from the anomaly specific pre-publication and

post-publication periods separately (this approach conserves the structure of returns present

in the data). We then concatenate the sampled pre-publication and post-publication periods

to form a full bootstrap sample for the given anomaly. Using this sample, we calculate full

sample IS alphas, pre-publication IS alphas, post-publication IS alphas, and post-publication

OS alphas, as well as the difference between post-publication IS and OS alphas (which we

refer to as IS-OS alphas). We repeat this process 10,000 times and obtain standard errors

from the cross-simulation standard deviation of each of these alphas. In the case of alphas

computed using Bayesian optimal weights, we hold fixed the prior distribution of alphas

used. In the case of the machine learning methods (KNS and BPZ), we repeat the 4-fold cross
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validation design to select the hyperparameters in each simulation. Figure IA.1 contrasts (for

post-publication IS alphas) our bootstrap t-statistics with t-statistics obtained from Newey

and West (1987, 1994), which are common in the literature. The two types of t-statistics

tend to be very similar.

For the bootstrap standard errors associated with average alphas across anomalies, we

cannot sample pre-publication and post-publication periods separately (as they differ across

anomalies), and thus proceed as follows. We start by splitting the sample between early

(1963 to 2002) and late (2003 to 2023) periods. Then, we sample (with replacement) months

from each of these periods separately and obtain anomaly returns for the sampled months

accordingly (we sample 12 × 40 = 480 months from the early period and 12 × 21 = 252

months from the late period). For each anomaly, we classify each month as a pre-publication

month or a post-publication month based on whether it comes from the given anomaly’s

pre-publication or post-publication period. Finally, we calculate full sample IS alphas, pre-

publication IS alphas, post-publication IS alphas, and post-publication OS alphas, as well as

the difference between post-publication IS and OS alphas (which we refer to as IS-OS alphas).

We then average these values across anomalies. Finally, we repeat this process 10,000 times

and obtain standard errors for average alphas from the cross-simulation standard deviation

of each of these average alphas. The only exception is the specification “Anomalies Even

Before Publication” (in Figure 4) as we repeat the process 1,000 times in that case (due to

the long computing time for that specification).

IA.4



References for Internet Appendix

Campbell, J. Y., A. W. Lo, and A. C. MacKinlay (1997). The Econometrics of Financial

Markets. Princeton University Press.

Cochrane, J. H. (2005). Asset Pricing. Revised Edition. Princeton University Press.

Gibbons, M. R., S. A. Ross, and J. Shanken (1989). “A Test of the Efficiency of a Given

Portfolio”. In: Econometrica 57.5, pp. 1121–1152.

Newey, W. K. and K. D. West (1987). “A Simple, Positive-Definite, Heteroskedasticity and

Autocorrelation Consistent Covariance Matrix”. In: Econometrica 55.3, pp. 703–708.

Newey, W. K. and K. D. West (1994). “Automatic Lag Selection in Covariance Matrix Esti-

mation”. In: Review of Economic Studies 61.4, pp. 631–653.

IA.5



4 2 0 2 4 6 8 10
Bootstrapped Tstats

4

2

0

2

4

6

8

10
Ne

we
y-

W
es

t T
st

at
s

Bootstrapped Versus Newey-West Tstats

y = 0.07 + 0.94x

Correlation = 0.984

Figure IA.1
Comparing Bootstrap and Newey-West t-stats of IS Alphas Post-Publication

The figure plots t-stats of IS alphas post-publication based on Newey and West (1987, 1994) (in the y-axis)
and the bootstrap method described in Section B of this Internet Appendix (in the x-axis). In the main text,
we focus on bootstrap t-statistics since we cannot compute t-statistics for OS alphas using Newey and West
(1987, 1994). However, the graph shows that the two procedures produce similar t-statistics for IS alphas over the
post-publication period. These results are discussed in Subsection 1.3.
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Figure IA.2
Comparing σα Values from our Empirical Bayesian Procedure with the Moderately Informative Prior

The figure plots the σα = 5.0% of our moderately informative prior (in orange) against the time-series of the σα

estimated from our empirical Bayesian procedure (in blue). The details of our Bayesian procedure are provided
in Subsection 3.1 and these results are discussed in Subsection 3.2.
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