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1 Introduction

Specifying an asset-pricing model via the stochastic discount factor (SDF) is a pow-
erful analytical tool that encodes the risk-return trade-off across multiple assets and
across multiple horizons. The former set of implications has enjoyed virtually endless
amount of theoretical and empirical research. The focus is on finding, at a single
horizon, the maximum Sharpe ratio (SR) portfolio whose return is inversely related
to the SDF.

In this paper, we argue that there are important dynamics of the SDF that substan-
tially affects its multi-horizon empirical performance. Hence, evaluating SDF's using
multi-horizon returns (MHR) should feature more prominently in model selection.
We show that an MHR-based test amounts to a stringent evaluation of conditional
implications of a model.

Our approach is motivated by the fact that most economic decisions, such as, corpo-
rate investments, private equity, or consumption-savings plans, involve longer hori-
zons. For instance, Campbell and Viceira (2002), among many others, emphasize the
importance of return predictability for optimal long-term portfolios. By implication,
the multi-horizon SDF is an important framework for evaluating economic models.

Surprisingly, there is little research on evaluation of SDF models using MHR. The-
oretical work has developed tools allowing researchers to characterize properties of
equilibrium models at different horizons (e.g., Hansen and Scheinkman, 2009, Backus,
Chernov, and Zin, 2014). Empirical work highlights properties of MHR but does not
use them to explicitly test models of the SDF (e.g., Campbell, 2001, Kamara, Kora-
jezyk, Lou, and Sadka, 2016).

We make two key contributions. First, we show that MHR-based tests could be
interpreted as adding a set of instruments to standard single-horizon tests in the
context of GMM-based estimation. As a result, MHR serve as a natural guard against
persistent conditional misspecification.

Second, we show that misspecification of the temporal dynamics in state-of-the-art
models of the SDF, as uncovered by MHR, indeed are quantitatively large. In par-
ticular, we consider linear factor models of the form SDF = a — b" F, which arguably
are the workhorse models for empirical risk-return modeling. It is well-known that
such an SDF implies a linear beta-pricing model of expected returns (e.g., Cochrane,
2004). Under the null of these SDFs, the traded factors F' span the unconditional
mean-variance efficient (MVE) portfolio. We impose the minimal requirement on a
factor model that it prices its own factors. The new idea in our approach is to impose
this requirement on factor returns at multiple horizons.



We find that models deemed successful on the basis of single-horizon returns (thus
having factors that yield a high maximal SR) tend to do worse at long horizons, that
is, they have large MHR pricing errors. Further, we show that the dynamics of the
factors, as manifested by multi-horizon variance ratios, are grossly inconsistent with
the dynamics implied under the null of the factor model. In other words, current
state-of-the-art models of the risk-return trade-off, which are typically estimated at a
monthly or quarterly frequency, do a poor job accounting for the risk-return trade-off
at longer horizons.

The reason the models reject is that the model-implied SDFs do not price the test
assets conditionally. If conditional pricing errors are persistent (autocorrelated), they
may affect longer-horizon excess factor returns. Specifically, persistent pricing errors
that appear “small” at the monthly horizon can become large over multiple horizons
as they accumulate over time. This is the kind of misspecification MHR is detecting
when used as test assets.

An unconditionally MVE portfolio prices assets also conditionally (Hansen and
Richard, 1987). Thus, the rejection suggests that the factors do not unconditionally
span the MVE portfolio. However, because we evaluate the models using MHR to the
pricing factors themselves, it follows that there must exist time-varying a’s and b0’s in
the SDF that do price MHR correctly. To assess the nature of the misspecification in
more detail, we model b; as a latent process and estimate it and the corresponding
a; by including MHR in the set of test assets, thus asking the model to jointly price
returns at multiple horizons. The estimated factor loading has large variation and
little relation to the standard conditioning variables used in asset-pricing.

The evidence prompts us to investigate the economic origins of the time variation
in b. We hypothesize that the typical factor construction methodology, which uses
characteristics-based rank portfolios, is likely responsible for the persistent misspeci-
fication. When forming long-short portfolios, the decision to use decile extremes, or
the characteristic itself, or the specific type of a double-sort, are ad hoc. We show that
these decisions easily yield persistent misspecification in the scale of the portfolio. If
one can identify a time-varying b; reflecting the scale-misspecification, then one could
form a new factor Fy.; = b} Fy,; that would feature a constant (unitary) loading in
the SDF.

In practice, b is sometimes close to a constant and the model is not rejected. That
happens when F' is comprised of the market excess returns and other factors from
the FF3 model (Fama and French, 1993), the value (HML) and size (SMB) factors.
But, in most cases, including betting against beta (BAB), profitability, investment,
momentum, versions of the five Fama-French factors hedged for unpriced risks (see



Daniel, Mota, Rottke, and Santos, 2018), and the mispricing model of Stambaugh
and Yuan (2017), the constant b hypothesis is strongly rejected.

It may seem intuitive that as one adds more factors, there is more scope for com-
plicated dynamics that require time-varying b. Economically, however, this is not so
clear. As one considers models with increasingly higher short-run maximal SR, and,
presumably, gets closer to the unconditional MVE portfolio, it would be natural to
expect less evidence of time-variation in b. In this sense, our results are surprising.

In a robustness section, we confirm that the results are not specific to the particular
return horizons chosen in the tests. We also run standard “alpha-regressions” and
use Gibbons, Ross, and Shanken, 1989 (GRS) to test whether instruments (managed
portfolios) based on MHR can deliver alpha in the standard, short-horizon setting.
The models are rejected with high maximal information ratios.

There are many papers that test conditional versions of factor models. For instance,
Jagannathan and Wang (1996) and Lettau and Ludvigson (2001) consider conditional
versions of the CAPM and the consumption CAPM using proxies for the conditioning
information related to aggregate discount rates, such as the dividend-price ratio, to
arrive at unconditional linear multi-factor models with constant factor loadings in
the SDF. Other examples include Ferson and Harvey (1999) and Farnsworth, Ferson,
Jackson, and Todd (2002). Our contribution relative to this literature is to show
that MHR are informative test assets in terms of uncovering a model’s conditional
dynamics.

Another example of using conditioning information is Moreira and Muir (2017) who
find that factors normalized by their conditional variance outperform the original
factors. That is equivalent to a b that varies with the inverse of the conditional factor
variance. Indeed, we find that an estimated b, is significantly negatively related to
the conditional market variance. However, the R? of a regression of b; on this and
other natural variables, such as the dividend-price ratio, is low, indicating that a
substantial part of the variation is due to other sources. Related, while a volatility-
managed version of the Fama-French 5-factor model (FF5) prices its own factors at
longer horizons, it does not price MHR to the original FF5-factors.

Our paper makes a connection with a literature that seeks to characterize multi-
horizon properties of “zero-coupon” assets, such as bonds, dividends strips, vari-
ance swaps, and currencies. Such work includes Belo, Collin-Dufresne, and Goldstein
(2015), van Binsbergen, Brandt, and Koijen (2012), Dahlquist and Hasseltoft (2013),
Dew-Becker, Giglio, Le, and Rodriguez (2015), Hansen, Heaton, and Li (2008), Lustig,
Stathopoulos, and Verdelhan (2013), and Zviadadze (2017). There is also an earlier
literature that considers multiple frequencies of observations when testing models



(e.g., Brennan and Zhang, 2018, Daniel and Marshall, 1997, Jagannathan and Wang,
2007, Parker and Julliard, 2005).

Notation. We use E for expectations and V for variances. A t-subscript on these
denotes an expectation or variance conditional on information available at time ¢,
whereas no subscript denotes an unconditional expectation or variance. We use dou-
ble subscripts for time-series variables, like returns, to explicitly denote the relevant
horizon. Thus, a gross return on an investment from time ¢ to time t 4+ h is denoted

Ripin.

2 Testing asset pricing models using MHR

In this section, we evaluate the implications of jointly testing whether a proposed
model of the SDF can explain the empirical risk-return trade-off across horizons.
Intuitively, risks that appear very important at a short horizon may be less important
at longer-horizons relative to other, more persistent risks, and vice versa. Analysis of
such dynamics has received little attention in the previous work, despite the relevance
for theoretical models and investment practice.

2.1 Preliminaries

Let the one-period stochastic discount factor (SDF) from time ¢ to ¢ + 1 be M; 4.
The Law of One Price (LOOP) then states that

Et(Mt,t+1Rt,t+1) = 17
or
Et(Mt,t+1(Rt,t+1 - Rﬁt,t—i—l)) = 0.

Here R; 41 and Ry .41 are one-period gross return on a risky and the risk-free assets.
The overwhelming majority of empirical asset pricing papers are concerned with tests
of these relationships, where a period is typically a month or a quarter (e.g., Fama
and French, 1993, 2016).



2.2 The MHR Test

The framework offers a natural way to propagate the model implications across mul-
tiple horizons. The multi-horizon SDF and returns are simple products of their one-
period counterparts:

h
Mt7t+h = HMt—i-j—l,H-jv

J=1

h
Riiin = HRt—i-j—Lt-i-ja
=1

h
Rppsrn = | Rresiorees:

j=1
LOOP still holds:*
Ey(MyinRiein) =1, (1)
or, for excess returns,
Eyf(Meern(Reprn — Rypen)) = 0. (2)

The unconditional version of this condition can be easily tested jointly for multiple
horizons h in a GMM framework.

2.3 Interpretation

To see what MHR add to the evaluation of a candidate stochastic discount fac-
tor, assume the model unconditionally prices one-period returns correctly, i.e.,
E(M;s41Rs5+1) = 1 for any s. Applying the model to two-period returns from time
t—1 to time t + 1, we can write:

E<Mt71,t+1Rt71,t+1) = E(Mtfl,thfl,t)'E(Mt,t+1Rt,t+1)
+ Cov(My—14Ri—14, My Rigi1).

Tt is immediate from the law of iterated expectations, that an SDF that prices a set of one period
returns conditionally (i.e., Ey[My 1R 14+1] = 1), also prices multi-horizon returns to the same set
of assets (i.e., E[{My_p 41 Ri—p+1] = 1 for any h > 1). This can be seen by recursively iterating on
the following equation for h = 1,2, ..., etc.: E[My_p 41 Ri—p41] = E[Mi—p i Ri—p 1My 11 R 141] =
EM_ptRi—p 1 E[My 41 Rt 1+1]] = E[My—pRi—n], where the last equality follows if the model
prices the one-period returns conditionally.



Therefore, if (1) holds at both one- and two-period horizons,

Cov(My—14Ri—14, Myp1Ri141) = 0.

To appreciate the meaning of this restriction of the covariance, define one-period
pricing errors as M s11Rs 41 — Es(Ms s11Rs 541). Because R is a gross return, the
conditional expectation of its product with the SDF is equal to one. Thus, the
condition above that the covariance term equals zero implies that past pricing errors
cannot predict future pricing errors. This is the hallmark of a correctly specified
model.

A generalization to (h + 1)-period returns, under covariance-stationarity, is

h—1

E(M;_pi1Ri—1441) =1+ Z Cov(My—pyjsRe—nvju, Mygy1Repg1).
§=0

Thus, adding information about MHR is a test of whether multi-horizon pricing errors
predict one-period pricing errors.

In general, lower-frequency returns can be thought of as applying a particular condi-
tioning instrument in the sense of Hansen and Richard (1987). In particular, consider
an instrument in investors’ information set, z;, and the returns to the managed port-
folio z;R;4+1. LOOP implies:

E(Miyi12eRi111) = E(Mygi1Rigia) - E(2) + Cov(ze, Mygy1 Regy).

Instruments allow for testing of the model’s conditional properties as they test,
through the term Couv(zy, My 441 Ry 441), whether pricing errors are predictable.

In our case, instruments vary with horizon and we can define them as zt(h) =
M, _p Ry The variable zf@ is not a traditional instrument used in GMM tests
because it has to satisfy FE (zt(h)) = 1. This condition is tested implicitly when imple-
menting unconditional tests of (1) or (2).

The instrument-based interpretation of the tests connects to the optimal instruments
of Hansen (1985), see also Nagel and Singleton (2011). Optimal instruments are se-
lected to minimize the covariance matrix of parameter estimation error. In general,
one cannot implement the true optimal instrument because it entails computation of
the conditional expectation of the derivative of the moment with respect to parame-

ters. That makes it hard to directly compare them to zt(h)



We view our approach as attractive and pragmatic complement to the optimal per-
spective. Our instruments are economically motivated, not data-mined, and straight-
forward to implement. The remaining issue is whether they are informative about the
candidate models. In contrast to optimal instruments, we cannot offer a mathemat-
ical result. Thus, instead, we will proceed with evaluating informativeness of these
instruments in the context of a specific application: linear factor models.

2.4 Linear factor models

While our approach is applicable to any asset-pricing model featuring an SDF, we
consider cases where SDFs can be expressed as

-
Mt,t+1 =a—>b Ft7t+1a (3)
where F; ;41 is a vector of factor excess returns.

Our test assets are the factors themselves, as well as the risk-free rate. The SDF
coefficients, a and b, can be estimated using only one-period returns in an exactly-
identified unconditional GMM estimation of the model. We will be able to also test
the model by adding multi-horizon excess factor returns. Thus, we will be testing if
a one-period factor model can price the MHR of its factors when compounded to the
corresponding horizons. This is the minimal requirement one would want to impose
on a model in terms of MHR pricing. In order to test the condition (2), we construct
factor MHR via:

h
Ripyn = H(Ft+j—1,t+j + Ry tij144)-

j=1

Because the test assets are the SDF factors themselves, there exists an SDF with
time-varying coefficients,

Mt,t—H = ay — thFt,tJrh (4)

that prices all test assets correctly.? Equations (1) and (2) imply that
ag = R;it.'.l + thEt(Ft,t+1>: (5)
b = (Rt ViFre)] Ey(Fysn)- (6)

2If the SDF conditionally prices the factors and the risk-free rate correctly, it also prices any
trading strategy in these base assets correctly. As shown earlier, MHR can be viewed as trading
strategies in one-period returns. If LOOP holds, it is immediate that there exists some a; and by
such that this alternative SDF prices the base assets conditionally, as we have as many degrees of
freedom as we have moments at each time ¢.



Our null hypothesis is a; = a, and b; = b.

This null hypothesis is equivalent to saying that there exists a linear combination of
the factors that is perfectly negatively correlated with an SDF. Such a linear combi-
nation is the MVE portfolio (Cochrane, 2004). The large literature on unconditional
beta-pricing factor models (e.g., Carhart, 1997; Fama and French, 1993) is exactly
concerned with finding factors that unconditionally span the unconditional MVE
portfolio.

Note that the constant b does not imply constant factor risk premiums—it implies
that conditional factor risk premiums must be proportional to the conditional factor
variance multiplied by the conditional gross risk-free rate. A number of authors,
e.g., Campbell and Shiller (1988), Fama and French (1988), Haddad, Kozak, and
Santosh (2018), find strong return predictability in common pricing factors. These
predictability findings do not by themselves contradict our null hypothesis. Our tests
are, however, a test of whether the conditional factor risk premiums line up with the
conditional variance in the way Equation (6) prescribes.

Yet another perspective on our analysis arises from representing the SDF in terms
of prices of risk, \;, and innovations. Decompose the SDF into its conditional mean,
Ei(Miii1) = R;j’t“, and a shock:

- T
Mygr = Ryy g — A €, (7)

where €4 is i.i.d., zero mean, and unit variance. Further, assume that the shocks to
the SDF also drive factor returns in the following manner:

Fispi = Ryt Vi (Frop) M + V2 (Frpn)es
Then, we can represent the SDF in terms of F
Mgt = Ry} oy + Rpoei A A — N V(B Fr. (8)
Comparing Equations (4) and (8), we see that
b= AV, P (Fuun). (9)

The null hypothesis b; = b implies that prices of risk must line up with the amounts
of risk.

2.5 Results: a case of MKT + BAB

Our initial discussion is based on a two-factor case: excess return on the market
(MKT) and the betting against beta (BAB) strategy. The first factor corresponds

8



to the oldest factor model, the CAPM. The second factor corresponds to the oldest
anomaly: low (high) beta stocks have positive (negative) alphas (Jensen, Black, and
Scholes, 1972 and, more recently, Frazzini and Pedersen (2014)). Apart from the
historical perspective, this model has the benefit of having only two factors that are
constructed to be conditionally uncorrelated. This simplifies the exposition greatly
and therefore serves as a good case study for the implications of looking at MHR
when testing asset pricing models. We later show that the issues highlighted in this
case are pervasive and hold for many factor models.

The model (3) specializes to
Mt,t+1 =a— meKTt,tH - bbabBABt,t+1> (10)

where MKT; 11 = Ryti+1 — Ryesr1 and BAB; ;1 is the (excess) return associated
with the BAB long-short strategy. We proxy for the market portfolio using the CRSP

value-weighted equity index of NYSE, AMEX, and NASDAQ stocks. We use the risk-
free rate from Kenneth French’s webpage.

We construct the BAB factor following Fama and French (2016) and Novy-Marx and
Velikov (2016). Specifically, we construct four value-weighted portfolios: (1) small
size, low beta, (2) small size, high beta, (3) big size, low beta, and (4) big size,
high beta. The size cutoffs are the 40th and 60th NYSE percentiles. For betas, we
use the 20th and 80th NYSE percentiles. Denote these returns as Ry, Rqn, Rye, Ron,
respectively, where s denotes small size, ¢ denotes low beta, b denotes big size, and
h denotes high beta. We also compute the prior beta for each of the four portfolios
and shrink towards 1 with a value of 0.5 on the historical estimate. We denote these
as Bset, Boet, Bshi, and Bpne. We construct these portfolios using the 25 size and
market beta sorted portfolio returns, as well as the corresponding market values and
60-month historical betas, given on Kenneth French’s webpage.

The factor return is then constructed as follows:

1 1 1
BAB, = or <§Rsé,t+1 + §Rb€,t+1 - Rf,t,t+1>
1 1 1
— % <§Rsh,t+1 + QRbh,tH — Rf,t,t+1> ; (11)

where f;; = %Bsm + %/Bb&t, and (B = %Bsh,t + %/Bbh,t- As a result, the conditional
market beta of BAB is close to zero, as in Frazzini and Pedersen (2014).

The test assets are the 1-, 12-, and 24-month excess returns to the factors in the model
at hand, as well as the 1-month risk-free rate. The sample is from July 1963 to June
2017. We implement the two-stage efficient GMM. We also consider the unconditional

9



CAPM by setting by, = 0. To help with the economic interpretation of the GMM
estimation results, we report mean absolute pricing errors (MAPE). MAPE should
be understood as the present value of a zero-investment strategy with a notional of
$1. MAPE is computed in two steps. First, because our tests assets span different
horizons, we annualize each horizon’s pricing error via geometric compounding. Sec-
ond, we add up the absolute values of the annualized pricing errors and divide by the
number of moment conditions minus the number of parameters.

Results are reported in Table ??. The leftmost columns in the table show, as a refer-
ence, a “single-horizon test”, which is simply the two models, MKT or MKT+BAB,
estimated using one-month returns to the factor(s) and the risk-free rate. The “multi-
horizon test” reports the results of estimation including the 12- and 24-month excess
factor returns as test assets.

The SDF coefficient estimates for the unconditional CAPM, or the MKT factor,
are basically the same across the two estimations. MAPE is less than 1% in
both estimations and the J-test in the multi-horizon test does not reject. The
maximal annualized prices of risk of this model (the maximal SR), reported as
\/EVTl/Q(Mt,Hl)/ET(Mt’tH), are equal to 0.38 and 0.37 in the single-horizon and
multi-horizon tests, respectively. In other words, for the MKT-model the assumption
of constant a and b is not rejected and the addition of multi-horizon returns in the
test therefore does not affect the results much.

We would like to emphasize the meaning of failure to reject in this context. The
MKT factor is capable of pricing itself at multiple horizons. That does not imply,
however, that the MKT model is well-specified. As we know, it is easily rejected by
a cross-section of equity returns. The failure to reject tell us that the MKT price of
risk lines pretty closely with the variance of MKT so that the coefficient b in the SDF
is close to a constant in line with equation (9). Thus, the MKT result serves as a
useful benchmark for the subsequent results.

For the MKT+BAB model, however, multi-horizon excess factor returns reveal sub-
stantial model misspecification. In particular, in the single-horizon case, MAPE is
6.6%. Considering that the risk premium on these factors are about 6% p.a. the mis-
pricing is economically large. In the multi-horizon test, MAPE is reduced to 4.1%,
which is still economically a large number. This reduction is achieved by strongly
altering the coefficient estimates. Most notably, the risk loadings b,, and by, are
reduced from 1.9 and 4.9 in the single-horizon case to 1.4 and 0.9 in the multi-horizon
case, respectively. The estimated maximal SR is reduced from 0.65 to 0.26. Put
differently the SR is too low even to account for the market itself.

That the estimated parameters have changed substantially upon introduction of MHR
is prima facie evidence of the model misspecification. The J-test confirms that,
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rejecting the model at the 1% level. Hence, this factor model does not successfully
price its own factors both at short and long horizons. This is a startling fact. One
might have thought that it is innocuous to focus on short horizon returns. But that
is not the case. A model fit that does well at short horizons may do poorly at long
horizons, even when only pricing its own components. Evidently, it is important to
consider factor model fit across multiple horizons.

Figure 1 graphically conveys the same message. The panels report annualized pricing
errors for each factor at all horizons from 1 to 24 months. Panels A and B correspond
to the SDF's that are estimated using only 1-month returns, for the MKT and the
MKT+BAB models, respectively. Similarly, Panels C and D correspond to the SDF's
that are estimated also using the 12- and 24-month horizon excess factor returns.

Panels A and C show that MKT is pricing itself across horizons quite well. Panel
B shows that for the MKT+BAB model absolute pricing errors increase strongly
with horizon for both factors, and especially for the BAB factor. The annualized
24-month pricing error is more than 10% in absolute value — an economically large
failure relative to the $1 scale of the zero-investment strategy being tested (and the
6% average risk premium on the BAB factor). Panel D shows the pricing errors when
the MKT+BAB model is estimated using multi-horizon returns. The absolute pricing
errors are reduced relative to panel B. That said, the model is still strongly rejected,
per the results in Table 1. In fact, the largest error is now at the 1-month horizon
(about 5% for the BAB factor and 2% for the market factor).

Note that the failure to reject the MKT-model should not be interpreted as this being
the “best” model. The non-rejection is a function of the test assets, which for the
MKT-model is only the risk-free rate and excess MKT returns at different horizons.
Indeed, the SDF loading on the BAB-factor by, is statistically different from zero
in both estimations of the MKT+BAB model, thus rejecting the MKT model when
adding the BAB-factor return to the set of test assets.

3 Dynamics implicit in a model specification

The MKT+BAB model rejection is a consequence of factor dynamics unaccounted
for in the linear factor model. In this section, we consider these dynamics.

11



3.1 Constant factor loadings

In order to frame the evidence, recall that our null hypothesis, a; = a and b; = b,
implies that the portfolio return defined by

ﬁt,t—i—l = bTFt,t-‘rl (12)

is the unconditionally MVE portfolio (Hansen and Richard, 1987). Equation (6)
implies for this MVE portfolio:

1= [Rf,t,t+1‘/t(ﬁt,t+1)]71Et(ﬁt,t+1)-

Therefore, under the null b; = b, the portfolio dynamics can be written as
Fion = Rf,t,t+1Vt(}~7t,t+1) + Et41, (13)

where g,41 = bTth/ 2(Ft,t+1)5t+1. Rejection of the null by = b implies that true dy-
namics of the portfolio are different.

3.2 Variance ratios

Equation (13) implies that if ﬁt,tﬂ is the MVE portfolio, then the residuals ¢ should
be uncorrelated over time. That is not the case in the data. To illustrate this point,
we use variance ratios of these residuals across multiple horizons. Variance ratios

have been used earlier to assess multi-horizon Euler equation errors (see, e.g., Flood,
Hodrick, and Kaplan, 1994).

Recall that the variance ratio at horizon h is:

V()i &)

VR = VG

(14)
As is well known, if € is uncorrelated over time, then VR(h) = 1 for any h. If £ is

positively autocorrelated, then V R(h) > 1 , whereas if £ is negatively autocorrelated,
then VR(h) < 1.

We use b estimated by GMM to construct ﬁt7t+1 and estimate an EGARCH(1,1)
to obtain Vt(ﬁt’tﬂ) under the maintained assumption that the two factors (MKT
and BAB) are uncorrelated. Continuing with the examples of section 2.5, we report
variance ratios for the shocks in the case of MKT and MKT+BAB in Figure 2. Both
models exhibit strong departures from 1 as horizon increases. That implies a strong

12



degree of intertemporal dependence, which is not accounted for by the model with

bt:b.

In particular, the MVE combination of the MKT and BAB portfolios is too highly
autocorrelated relative to what is implied by the model and the estimated conditional
return variance.®> Time-variation in b, that prices MHR correctly would “undo” this
autocorrelation and create a residual with variance ratios equal to 1 at all horizons.

3.3 Time-varying factor loadings

The rejection of the model (10) prompts us to consider an alternative SDF
Mt,t-‘rl = a¢ — meKTerl - bbab,tBABmH-

To illustrate how much variation in b; we are missing, we use MHR to estimate the
SDF. We assume that by, follows a latent AR(1) process:

bpavt = (1 — )b + Pbyapi—1 + o€y

While b,,, could be time-varying, we set it to a constant for simplicity as most of the
action is clearly emanating from the BAB factor. Further, we assume that the MKT
and BAB factors are conditionally uncorrelated. That is consistent with the BAB
factor construction, which weights the underlying stocks by the inverse of estimated
market betas to make the BAB factor’s forward-looking market beta approximately
zZero.

The model is estimated via GMM using the same moment conditions as in the multi-
horizon test case. We use the Kalman filter to estimate byqp¢ via the observation
equation:

[Rf,t,tJer;f(BABt,tJrl)]ilBABt,tJrl = bpab,t + €141
that is inferred from Equation (6). We infer the corresponding a; using Equation (5).

Table 77 presents estimation results. The J—test fails to reject the model, and MAPE
is 2.9%, which is a 30% improvement relative to that of the model with a constant
b, as estimated using MHR, and more than 50% improvement relative to the case
with constant b estimated using only 1-month returns. Figure 3 compares the pricing

3In unreported results, we find that it is the BAB factor itself that has a strongly increasing
variance ratio over time.
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errors at each horizon to the ones obtained in the constant b case, as reported earlier
in Panel D of Figure 1. The improvement is evident at each horizon.

The estimated byq,¢ is quite persistent with ¢ = 0.88 and volatile with unconditional
volatility of 5.2, which is large relative to its mean of 6.4. To get a more intuitive
interpretation for these numbers we can use Equation (9), which implies that the
price of risk (SR) associated with exposure to the BAB-shock, Ayp¢, is equal to
bbab,tth/ 2(BABMH). The annualized volatility of this price of risk is 0.57. This is
large compared to its mean of 0.63. Figure 4 displays the time-series of by, and
Avab,t- Both variables appear to be related to business cycles, but it is clear that
there is much additional variation. This prompts the question if we could relate the
dynamics to standard observable instruments used in the literature.

Table 7?7 displays the results of regressing byep: and Ay on a recession indicator,
the BAB beta spread, the conditional variances of the market and BAB returns as
estimated earlier, the log market dividend to price ratio, and the 10 year over 1 year
term spread. The beta spread is the spread between the high and low market-beta
sorted portfolios in the BAB factor, as described earlier.

The overall R? is 15% with only two significant variables. The variables byapr and
Ababt are significantly positively correlated with the BAB beta spread and signifi-
cantly negatively correlated with the conditional variance of market returns. Perhaps
surprisingly, the variables no not comove significantly with business cycle indicators.

This evidence leaves us with a question of the driving forces behind the variability in
b;. Equation (9) says that there is going to be variation whenever factor prices of risk
and their variances are not proportional. In the case of MKT, the two objects appear
to line up close enough to fail to reject the null of constant b,,. That is not the case
for BAB.

3.4 The impact of sorting on the factor dynamics

Our thesis is that the common characteristic-sort-based approach to construction of
factors often leads to persistent misspecification of the factors. In particular, in order
to construct factors that correspond to an SDF with a constant b, the sort needs
to deliver factors that have a conditional covariance matrix that lines up with the
conditional prices of risk of the underlying shocks, as in equation (9). It is unlikely
that a characteristic-sort will deliver such a factor as there is no mechanism in the
sorting procedure that guarantees it.
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We specialize the SDF in (7) to

—1
Mt,t+1 = Rf7t7t+1 - >\m€m,t+1 - )\bab,t€bab,t+1, (15)

where the shocks are uncorrelated with each other and over time. Since the market
factor is not our focus, we assume the market shock’s price of risk is constant and let
excess market returns follow:

MKTt,H_l = Um)\m + OmEm,t+1- (16)

Further, consider a simplified version of the BAB factor when there are only two
underlying assets — a high market beta portfolio and a low market beta portfolio with
returns:

Ryiis1 — Rpprn = BayMET, 1 + [(1— Bri)Meabe + (1 — Bht)pavitil,
Ropiv1 — Rprvn = BeaMKT, 100 4 [(1— Bot)Nvave + (1 — Bet)Evabit1]-

Then, the BAB Equation (11) simplifies to:

BAB, ;11 = ﬂztl(Re,t,tH — Rypi41) — 5;;%(Rh,t,t+1 — Ryii41)
= AMpabt + At€pabt+1, (17)

where

Ay = (Bh,tﬂﬂ,t)il(ﬁh,t — Bes)

is the “beta spread,” which measures the difference in the betas between the high
and low beta portfolios at each time .

This beta spread is highly time-varying and persistent in the data. Figure 5 displays
the time-series of A;. The annual volatility of the beta spread is 0.57 and the annual
persistence is 0.79. Thus, the choice to weight the portfolios with the inverse of the
portfolio beta is potentially not innocuous — it induces persistent dynamics in the
conditional mean and volatility of BAB returns, per equation (17) and the observed
beta spread.

Substitute Equations (16) and (17) into Equation (15) to express the SDF as a func-
tion of the MKT and BAB factors:

Migir = Rty + A4 Noapt — MmO MKT, 140 — Mpap Ay ' BABy 1. (18)

That is a version of the general specification in (8). Note that the price of risk Apgp
has to be proportional to A; for by, to be constant. Our evidence is that this is not
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the case. Further, while the sorting procedure chooses 4, there is nothing explicit in
the sorting procedure that ensures that it lines up correctly with g+

Empirically, as shown in table ??A, the beta spread is positively and significantly
related to byeps. Thus, the price of risk for the BAB shock, Apap¢, must be varying
strongly with the beta spread so as to undo the effect of the inverse of the beta spread
present in the term multiplying BAB, Apop: A, L

One might think of constructing a new factor %mﬂ = Apab O 1BABt7t+1 that
would lead to a constant b. However, one needs to know ex-ante both the conditional
price of risk Apep+ and the time-varying scale A; in order to accomplish that.

Our example is stylized and there could be other dynamics at play. For instance,
the BAB shock itself may have time-varying volatility that is not driven by the beta
spread. The main takeaway, however, is that there is no direct solution to this problem
by adjusting the time t sort based on the time ¢ cross-section of the characteristic
itself.

The argument we put forth in this paper is that MHR factor returns provide infor-
mative moments to detect this type of misspecification. In the next section, we test
several major linear factor models and revisit the impact of sorting in that context.

4 Testing factor models

In order to demonstrate the breadth of our conclusions we implement the MHR-based
testing of a broad set of linear factor models. These are state-of-the-art specifications
that boast high single-horizon SR. In this section we describe what MHR reveal about
these models.

4.1 Additional factors

There is a plethora of proposed factors in the literature. We select our models based on
their historical importance, recent advancements, and data availability. Specifically,
we include the Fama and French 3- and 5-factor models, FF3 and FF5, respectively
(Fama and French, 1993, Fama and French, 2016). The Fama-French 5-factor model
includes the market factor (MKT), the value factor (HML), the size factor (SMB),
the profitability factor (RMW; see also Novy-Marx, 2013), and the investment factor
(CMA; see also Cooper, Gulen, and Schill, 2008). The Fama-French 3-factor model
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only have the first 3 factors. We also consider FF54+MOM, where MOM refers to
the Momentum factor (Carhart, 1997, Jegadeesh and Titman, 1993). These data are
provided on Kenneth French’s webpage. We refer to this set of models as “classic
factor models.”

We also study versions of these models with unpriced risks hedged out as proposed
by Daniel, Mota, Rottke, and Santos (2018) (DMRS; data available on Kent Daniel’s
webpage), as well as a volatility managed version of the FF5-model, FF5y a4, from
Moreira and Muir (2017). For the latter, we construct last month’s realized variance
based on daily data for each factor and divide next month’s factor return with the
factors’ lagged realized variance. Finally, we also evaluate the 4-factor model (SY4)
of Stambaugh and Yuan (2017), who propose two new factors intended to capture
mispricing, in addition to the usual market and size factors. These data are available
on Robert Stambaugh’s webpage. We refer to this set of models as “recent factor
models.”

All of these models feature very high maximal short-run SR. Thus, the hope is that
these models get us close to the portfolio that is perfectly negatively correlated with
an SDF. Given Equation (3), such a portfolio has constant a and b in the SDF and
lies on the unconditional MVE frontier.

Panel A of Table 77 reports the MHR-based GMM tests for the roster of classic factor
models. To facilitate comparison, we restate MAPE and J—tests for the MKT and
the MKT+BAB models from Table 7?. FF5 and FF5+MOM are rejected at the 1%
level, while the FF3 model is not. For the rejected models, MAPE that corresponds to
multihorizon estimation is about 5.5%. This is larger than MAPE for the MKT+BAB
model.

As is the case with the MKT model, the failure to reject FF3 does not necessarily
imply the model’s ability to price all MHR. Clearly FF3 prices more factors than
MKT, but it is inferior, on the basis of single-horizon returns, to FF5 | which in its
turn is rejected on the basis of MHR. More important, the results are suggestive of
the implicit dynamics of b;. It appears that the time-varying volatility of FF3 factors
do not have a dramatic impact on b; as the prices of risk in these models line up
reasonably well with the conditional volatilities, as per equation (9).

Panel B reports the same for recent factor models. The unpriced risks hedged versions
of the Fama-French factors (Daniel, Mota, Rottke, and Santos (2018)) are rejected
in both the 3- and 5-factor versions of the model. The Stambaugh and Yuan (2017)
model is also rejected based on MHR. The volatility-managed version of the FF5
model, FF5y o 01an, i n0t rejected, however. Equation (6) suggest volatility managing
may be the appropriate approach when constructing pricing factors. We revisit this
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point in the next section. That said, the last column of Panel B of Table 7?7 shows
that the FF5y opran-model is strongly rejected when using MHR to the original FF5-
factors. Thus, while including this particular conditional information helps the model
price its own volatility managed factors, it does not help explain MHR to the original
FF5-factors.

4.2 Interpretation of the results

Panels A and B also report the maximal SR implied by the models (max. price of
risk). The one-period maximal SR — a dimension along which the candidate models
are optimized — appears to be positively related to MAPE of longer-horizon factor
excess returns.

We demonstrate this observation by constructing a scatter plot of (log) MAPE versus
(log) maximum SR in Figure 6. While there is no ex-ante reason for this relationship
to hold, it is interesting that the pursuit of the maximum SR, or equivalently, the
MVE portfolio, takes us further away from a constant b. One might have thought the
opposite would be the case given that the factors in Equation (3) span the uncondi-
tional MVE portfolio with a constant b in the SDF specification.

Related, the price of risk for the rejected models, change strongly as we move from
estimation using single-horizon returns to using MHR. This evidence suggests that
the implicit time-variation in b is economically large.

We illustrate the model rejections further via variance ratios that follow Figure 2.
Figure 7 reports the patterns of variance ratios for the in-sample mean-variance com-
bination of the factors for each of the rejected models. We chose the in-sample
mean-variance combination of the factors as a simple way to summarize each model.
The variance ratios deviate from 1 (the null hypothesis), in some cases strongly so.
For instance, the DMRS models have variance ratios in excess of 2 starting from the
12-month horizon. Thus, it appears that MHR identify persistent misspecification
that is introduced by improving short-run maximal SR of the FF models.

To summarize, we document pervasive, persistent misspecification in both classic
and recent factor models. This misspecification leads to large pricing errors over
longer horizons. Thus, while these models may do well in terms of characterizing the
local, one-month, risk-return trade-off, they do surprisingly poorly in terms of longer-
horizon risk-return trade-offs. In the next section, we trace this misspecification to
the current dominant procedure for factor construction that easily produces factors
with the wrong conditional scale.
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4.3 Factor dynamics and sorting: the general case

In section 3.4, we use BAB as a specific example to describe the impact of a portfolio
sorting procedure on factor dynamics. In this section, we argue that the phenomenon
that we describe in that section is pervasive. Cross-sectional portfolio sorts may easily
have drifting loading on the true underlying risk factor. The two standard methods
used in the literature for constructing factors — Fama-MacBeth regressions of returns
on lagged characteristics and rank characteristic-sorts — both normalize the cross-
section of the characteristics at each ¢ in particular ways that are likely to induce
persistent misspecification. To illustrate the mechanism we highlight in this paper,
we consider Fama-MacBeth regressions as the method for factor construction.

Assume the true SDF follows (3), where F' is a vector of orthogonal factor excess
returns, and excess factor returns and the risk-free rate are priced by this SDF. Let
excess returns to assets follow a factor model

-
Ritiv1— Rpppp1 = @,tFt,tH + €441,

where residuals are uncorrelated across stocks 7 and time t. Assume there is a unit
mass of firms such that the idiosyncratic shocks are completely diversifiable, that
the cross-sectional distribution of factor betas is non-degenerate, and that R;;t =
Eiy(Myy1). If we knew the f3;; we could run a cross-sectional regression at each time
t + 1 to retrieve the factors F":

Rivir1 — Rpert = Yourt + W 441 Bin + Eiea, (19)

In this case, 1,41 gives the vector of long-short factor excess returns, F;;1;. Typ-
ically, we don’t have these conditional betas and researchers instead use observable
characteristics, such as the book-to-market ratio.

Consider characteristics that have the following relation to betas:
Xit =00t + 01,08+

Thus, the characteristic is not unconditionally proportional to the true factor betas,
even if we allow for a time fixed effect. For ease of exposition, but without loss of

4One way to motivate this relation is to consider the effect of time variation in prices of risk.
For simplicity, consider a one-factor model version of (19), which implies Ey(R;t++1 — Rft¢41) =
Ey(v1,141)Bi- Next, consider a characteristics-based model of excess returns: Ey (R ;41 —
Ryt14+1) = 00 + 01X (e.g., Daniel and Titman, 1997). Setting the conditional expected returns
equal implies that X, ; = o+ + 01,40+ where 6o = —Jp/61 and 01, = Ey(v1,4+1)/1. In this case,
01,+ will vary persistently if the conditional factor risk premium varies persistently.
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generality, assume that there is only one factor. The Fama-MacBeth cross-sectional
regression

Ri,t,tJrl - Rf,t,t+1 ="Yo,u+1 T+ ’Yl,t+1X¢,t + €41,

then delivers the factor
=~ COU((Sl,tﬁi,t? ﬁi,tFt,t+1) V(/Bi,t>6l,tFt,t+1 _

T+t = V (61.8i0) T 2,V (B

—1
01 Fret1,

where the variance and covariance are taken across assets ¢ at each point in time.
Thus, the factor used by researchers is

n -1
Ft,t+1 = (51t Ft,t+1-

The intercept dp; cancels out in the long-short portfolio, but the proportional com-
ponent d;; does not. There is no control variable that naturally “cleans up” the
characteristic in the Fama-MacBeth regression.

As a result, the standard approach identifies a conditionally correctly specified model,
but an unconditionally misspecified model. That is, researchers specify:

My =a—bF4,.
A conditional version of this model is true:

My = a_btﬁt—&-l,
bt = bélt.

This is exactly the same issue that we have highlighted generally in equation (8) and,
specifically in the context of BAB, in equation (18). In sum, MHR, as test assets, are
likely to be useful for most factor models.

4.4 Robustness checks

In this section we show that our results are robust to using shorter horizon excess
factor returns as test assets in the GMM. We also consider the standard monthly
return “alpha-regressions” in the literature with short-term factor returns managed
over time using instruments motivated by the MHR test. The results are robust also
to this restricted, but more familiar test. Furthermore, allowing for time-varying b’s
through standard instruments such as dividend-price ratios or realized variance in the
GRS tests does not fix the problem — the models are still rejected when using the
horizon-managed factor returns as test assets.

20



4.4.1 Alternative horizons

Table ?? reports the two-stage efficient GMM-results for all the factors models con-
sidered earlier when using 1-, 2-, 6- and 12-month excess factor returns in addition to
the 1-month risk-free rate as test assets. The shorter maximal horizon means there
is less overlap in the data and gives more statistical power. The downside is that it
is less likely to capture the most persistent sources of misspecification. Panel A gives
the results for the classic factor models, while Panel B gives the results for the recent
factor models. The p-values of the J-test shows that in this case all models except
MKT and MKT+BAB are rejected at the 5% level or better. Thus, the misspecifica-
tion of the MKT+BAB model reveals itself better at longer horizons, consistent with
the persistent b; estimated earlier. Overall, the tests reveal substantial MAPE for all
models except the MKT model. Thus, using shorter horizons in the MHR test is still
quite informative for most models.

4.4.2 GRS test

An alternative to the GMM-tests presented so far is the GRS test of whether a given
set of one-period factor returns span the mean-variance frontier of a set of one-period
test asset returns. We note that this test is not a test of whether the model can
price MHR, but it useful to couch our results in the typical single-horizon setting
most studies apply. For our purposes, the test assets will be trading strategies in the
factors themselves. In particular, the test asset i = (k, h) is a strategy in factor k,
where the time-varying weights are given by lagged h-period discounted returns in
factor k, i.e.,

— )
Rz‘,t,t+1 - Rf,t,t+1 = Zp Fk,t,t+17

h h .
where Z;(c,t) = M;_p Ry —ns and Ry y_p, = Hszl(Rf,t+s—1,t+s +Fk,t+s—1,t+s) is the gross
return on factor k from ¢t — h to t.° The M used in construction of the instrument
z,g’:”t) is M1 = a— bTFt,tH, where a and b are estimated by requiring the model to

match the sample means of risk-free rate and the factors.
In sum, we run the time-series regression
-
Ritiv1 — Rpppv1 = 0 + 5 Fropr +€in

for each test asset i and report the joint (GRS) test that a; = 0 for all 4.

5The weights in a factor are unrestricted since the factors are excess returns.
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Because the instruments z,(;? are constructed using the candidate SDF, which in turn

depends on the parameter estimates of a and b, we consider both in- and out-of-
sample instruments. The former use the entire sample to estimate the SDF, whereas
the latter use information only up to time . We then test whether the factors F' span
the mean-variance frontier of these managed portfolios.

Panels A and B of Table 7?7 report the results of GRS tests on the classic and recent
factor models using lagged pricing errors (z,ght)) for horizons 2, 6, 12, and 24 months
for each of the factors, i.e., four managed portfolios for each factor. Most models
are strongly rejected regardless of whether one uses the in-sample instruments (see
p-value GRS test) or out-of-sample instruments (p-value, out-of-sample instruments).
The exceptions are the market model and FF5y 0. The former is rejected at the
5%-level based on the in-sample instruments, but not rejected based on the out of
sample instruments. The FF5y aqn the model is not rejected based on either in-
sample or out-of-sample instrument p-values when the managed portfolios are based
on discounted returns to the volatility managed FF5-factors. If the managed portfolios
are based on the original FF5-factors, however, the model is rejected at the 10%-level
based on the in-sample instruments. The p-value is marginally insignificant at 0.14
for the out-of-sample instrument case. Overall, the findings are in line with the GMM
tests in 77.

Also reported are the annualized maximum information ratios (IR) from MacKinlay
(1995), which is the component of the maximum SR unexplained by the factors.% To
get a sense of magnitudes, it is natural to compare the maximum IR to the SR of the
factors. In FF5, the maximum IR is 0.52 compared to a SR of the factors of 1.09.
For the other models, with the exception of the FF5y ,n74n,-model using discounted
returns to the volatility managed factors as instruments, the maximum IR tends to
be even larger relative to the SR of the corresponding factors. In other words, there
seems to be a lot left on the table.

The GRS test also serves an additional purpose as a robustness exercise. Because we
use one-period risk-free rate to construct MHR, one could be concerned that model
rejections are due the misspecification of our model of the SDF in (3) with respect
to the conditional risk-free rate. Because the GRS test is implemented using single-
horizon excess returns, its results are mechanically unrelated to the properties of the
risk-free rate.

6Recall, the squared monthly information ratio can be obtained from the regressions as o' " 1a,
where ¥ is the covariance matrix of the regression residuals. MacKinlay (1995) provides a small-
sample adjustment to arrive at an unbiased estimate of this quantity. We report the maximum of
this quantity and zero.
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5 Conclusion

The literature typically characterizes the risk-return trade-off, or, equivalently, the
SDF, at a single horizon. This focus is somewhat surprising given that the multi-
horizon risk-return trade-off is an important input to a range of economic decisions.
We propose testing SDF's jointly across multiple horizons and analyze the implications
of these additional moments for a wide roster of the state-of-the-art empirical linear
factor models.

We show that tests employing multi-horizon returns (MHR) are highly informative
about asset-pricing models. MHR relate to familiar conditioning instruments that
are common in GMM-based tests. This new type of conditioning information allows
us to uncover large mispricing for a wide range of benchmark factor models when
faced with MHR. We identify the current practice of ad hoc portfolio sorts for factor
construction as a likely culprit for the persistent misspecification and argue that MHR
provides valuable additional moments that can help in the construction and testing
of asset pricing models.
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Figure 1
Term structure of pricing errors, E(M - (R — Ry))

(A) GMM 1: MKT (B) GMM 1: MKT + BAB
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The panels show multi-horizon factor pricing errors for two models: M; = a — b, - MKT; (left)
and My = a — by, - MKT; — bpap - BAB; (right). Annualized pricing errors at horizon h are (1 +
Ep(Mn(Reivn — Rﬁt)t_kh)))w/h — 1, where Ep denotes the sample average, Ry 15 is the gross
factor return from month ¢ to t+h, and Ry 4 14 is gross h-period return from rolling over the riskless
bond. The population average of a correctly specified model is 0. Panels A and B give pricing errors
when the SDF is estimated using only 1-month returns (GMM 1), whereas Panels C and D give
pricing errors when the SDF is estimated also using the 12 and 24 month horizon excess factor
returns (GMM 2). Note the scale of the y-axis for Panel B relative to the other panels. Sample:
July 1963 to June 2017.
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Figure 2
Variance ratios of factor return model-implied residuals
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The figure shows variance ratios for model-implied residuals to the estimated
linear combination of factors given by b'F across different horizons, where b is
taken from the SDF M; = a — b' F} estimated using multi-horizon returns, as in
the multi-horizon estimation in Table 1. The residuals equal b" Fy ;11 — Ey(b' Fy411),
where the model gives the conditional expectation. Under the null hypothesis that
the model correctly captures the conditional expected returns, the residuals should
not be autocorrelated and the variance ratios should therefore equal 1 at all horizons.
See the main text for the precise calculation behind the factor residuals. The sample
is monthly from July 1963 to June 2017.
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Figure 3
Pricing errors for model with latent b,
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The figure shows the annualized pricing errors for the M KT and BAB fac-
tors vs. return horizon from the model M; = a; — by, - M KT}, — byt - BAB; (see main
text for details), as well as for the case with constant SDF loadings (see also Panel
D of Figure 1). The pricing errors for the case with time-varying b; are shown in the
legend with a subscript on the b in parenthesis. Holding period A annualized pricing
errors are (1 + Er(Myiin(Rison — Rpeien)))?" — 1, where Ep denotes the sample
average. [ ;. is the gross factor return from month ¢ to t + h, and Rf;sqp is the
h-period holding return for the (1-period) riskless bond. The population average of
a correctly specified model is 0. The SDF is estimated using both 1-month returns
to the risk-free rate and the factors, as well as the 12- and 24-month excess factor
returns. The sample is from July 1963 to June 2017.

29



Figure 4
Time-series of by,,; and the price of risk, Ay

(A) Time-series of bygp ¢ (B) Time-series of Apgp
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Panel A shows the filtered time series of by, ¢ (blue line) along with NBER recession in-
dicators (yellow bars) for the estimated model My = a;—by,- M KTy 1 —bpap s BABy 41
(see main text for details), using long-run excess factor returns in the model estima-
tion. Panel B shows the annualized conditional price of risk (Sharpe ratio) of the
BAB shock, denoted Apgp ¢, where Aoy i = bpapy - \/ 12 - Vi,(BAB¢41)). The sample is
from July 1963 to June 2017.
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Figure 5
Beta spread of beta-sorted portfolios
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The figure shows the difference between the conditional market betas of the
top minus the bottom beta-sorted portfolios used to construct the BAB factor, as
defined in the main text (A; = (BnBes) " (Bne — Ber)). The betas of the beta sorted
portfolios are obtained from Ken French’s website. For each portfolio, the conditional
beta is the market beta of the constituent firms estimated using the past 60-month
monthly return window, shrunk towards 1 (the value-weighted average beta) using a
weight of 0.5 on the historical estimate and 0.5 on 1.
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Figure 6
Max Sharpe ratio of single-horizon factor model vs.
multi-horizon pricing errors
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The figure plots the log (annualized) maximal Sharpe ratio of commonly used models factor models
against the log of the (annualized) mean absolute pricing error (MAPE) of the corresponding model.
The max Sharpe ratios are calculated as the sample annualized Sharpe ratio of the monthly returns
to the mean-variance efficient combination of the factors in a given model. The MAPEs are computed
by evaluating the fit of the models estimated using only 1-month returns on the excess factor returns
at the 1-; 12-; and 24-month horizons (see the main text for details). The factor abbreviations
are: MKT (the market factor), BAB (the betting-against-beta factor), FF3 (the Fama-French 3-
factor model), FF5 (the Fama-French 5-factor model), MOM (the momentum factor). The DMRS
subscripts refer to the Daniel et al (2017) unpriced-risks-hedged versions of the original factors.
The VolMan subscript refers to the Muir and Moreira (2017) volatility managed version of the FF5
factors. SY4 refers to the Stambaugh and Yuan (2017) 4-factor model. The sample is from July
1963 to June 2017.
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Figure 7
Variance ratios of excess returns, actual vs. theoretical. All
models
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The figure shows the variance ratio VR(h) = VG

each models’ implied MVE portfolio return residuals, £. The null hypothesis from
each model implies that variance ratios should equal 1 for all horizons. The factor
abbreviations are: MKT (the market factor), BAB (the betting-against-beta factor),
FF3 (the Fama-French 3-factor model), FF5 (the Fama-French 5-factor model),
MOM (the momentum factor). The DMRS subscripts refer to the Daniel et al (2017)
unpriced-risks-hedged versions of the original factors. The VolMan subscript refers
to the Muir and Moreira (2017) volatility managed version of the FF5 factors. SY4
refers to the Stambaugh and Yuan (2017) 4-factor model. The sample is from July
1963 to June 2017.

across horizons for

33



Table 1: Multi-horizon GMM tests
Models with the Market and Betting-Against-Beta factors

Single-horizon estimation Multi-horizon estimation

F=MKT F=[MKT BAB]' F=MKT F=[MKT,BAB]"

a 1.012%* 1.035** 1.011* 1.001**
(0.010) (0.041) (0.007) (0.007)
b 2.506™ 1.893* 2.386™** 1.440**
(1.080) (1.038) (0.842) (0.723)
Dbab 4.852"** 0.894
(1.874) (0.752)
p-value GMM J-test n/a n/a 0.663 0.000**
Factor MAPE 0.008 0.066 0.006 0.041
Max. price of risk 0.383 0.648 0.365 0.259

The table gives results from two-stage GMM estimation of two factor models: the market model,
with excess returns to the market as the factor (M KT), and the two-factor model with the Market
and Betting-Against-Beta (BAB) factors. The SDF is of the form M; = a — b' F;. “Single-horizon
estimation” means the model is estimated using only monthly returns to the factor(s) and the
risk-free rate. The “Multi-horizon estimation” additionally uses excess returns to the factor(s)
at the 12- and 24-month horizons. The estimated model parameters are given along with GMM
standard errors in parentheses. The maximal price of risk is the annualized standard deviation of the
estimated monthly stochastic discount factor divided by its mean. Factor MAPE is the annualized
mean absolute pricing error for the excess factor returns across horizons 1, 12, and 24 months. The
p-values are for the J-tests from the GMM estimation (n/a for the exactly identified “single-horizon
test” cases). The GMM procedure corrects for autocorrelation, cross-correlation, and heteroscedas-
ticity in the moments using the Newey-West method with lag length equal to 1.5 times the maximum
horizon or 12 months, whichever is larger. The sample is from July 1963 to June 2017. Three
asterisks denote statistical significance at the 1% level, two at the 5% level, and one at the 10% level.
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Table 2: Estimated Market and BAB factor model with time-varying SDF coefficient

Market SDF loading: b,, 1.544
BAB SDF loading: by

-b 6.366
-0 0.879
-0 2.482
J-test p-value 0.407
Factor MAPE 0.029
St.Dev. of bbab,t 5.206
Annualized mean of Apgp ¢ 0.627
St.Dev. of annualized Apgp,; 0.574

The table gives results from two-stage GMM estimation of the two-factor model with the market
(MKT) and Betting-Against-Beta (BAB) factors. The loading on the BAB factor, by ¢, follows a
latent AR(1) process (bpab,t = (1—¢)b+d-bpap,t—1+n:). The test assets are the 1-, 12-, and 24-month
excess returns to the factors, as well as the short-term real risk-free rate. The annualized conditional
price of risk (Sharpe ratio) of the BAB shock is denoted Apgp,+ and equals bpgp, i - /12 - Vi(BAB+1)).
The table reports its mean and standard deviation. Factor MAPE is the annualized mean absolute
pricing error for the excess factor returns across horizons 1, 12, and 24 months. The p-values
are for the J-tests from the GMM estimation. The GMM procedure corrects for autocorre-
lation, cross-correlation, and heteroscedasticity in the moments using the Newey-West method
with lag length equal to 1.5 times the maximum horizon. The sample is from July 1963 to June 2017.
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Table 3: Dynamics of time-varying BAB loading: Relation to standard instruments

Panel A: by, regressed on Coefficient  (std. error)
NBER recession dummy —1.246 (1.534)
BAB beta spread 2.184* (1.289)
Conditional variance of market return —8.766*** (2.587)
Conditional variance of BAB return —10.139 (7.475)
Log market dividend-price ratio 1.771 (2.202)
Term Spread (10yr - 1yr) 0.565 (0.421)
R? 0.147

Panel B: \yq,; regressed on:

NBER recession dummy —0.173 (0.172)
BAB beta spread 0.274* (0.144)
Conditional variance of market return —0.975** (0.324)
Conditional variance of BAB return 0.385 (1.208)
Log market dividend-price ratio 0.221 (0.244)
Term Spread (10yr - 1yr) 0.074 (0.049)
R? 0.140

The table shows regressions of the time-varying SDF coefficient byqp+ and the price of risk for the
BAB-shock (Apabt = bpapt X \/12Vi(BABy41)) regressed on common conditioning variables: an
NBER recession dummy, the spread in market beta between the top minus bottom decile portfolios
sorted on market beta, the conditional variance of market and BAB returns, the log market
price-dividend ratio, and the Treasury bond term spread. Standard errors are computed using the
Newey-West method with 12 lags. The sample is from July 1963 to June 2017. The statistical
significance of the parameters are given as follows: Three asterisks denote significance at the 1%
level, two at the 5% level, and one at the 10% level.
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Table 4: GMM tests of other benchmark factor models
Classic Factor Models

MKT+
Panel A: MKT BAB FF3 FF5 FF5+MOM
Single-horizon estimation:
Max. price of risk (annualized) 0.383 0.648 0.683 1.076 1.230
Factor MAPE (annualized) 0.008 0.066 0.018 0.020 0.030
Multi-horizon estimation:
Max. price of risk (annualized) 0.365 0.259 0.528 1.165 1.709
Factor MAPE (annualized) 0.006 0.041 0.009 0.057 0.056
p-value GMM J-test 0.663 0.000™* 0.824 0.000™* 0.000**

Recent Factor Models

(FF5 assets)
Panel B: FFBDMRS FF5D1WRS SY4 FF5VOZMan FF5V0lMan

Single-horizon estimation:

Max. price of risk (annualized) 0.959 1.522 1.326 1.195 1.195
Factor MAPE (annualized) 0.084 0.029 0.042 0.049 0.065
Multi-horizon estimation:

Max. price of risk (annualized) 0.510 1.184 1.691 0.853 3.101
Factor MAPE (annualized) 0.018 0.035 0.025 0.021 0.506
p-value GMM J-test 0.063* 0.000***  0.000***  0.249 0.000™*

The table gives the p-values from the J-tests from two-stage GMM estimation of the stochastic
discount factor implied by each factor model. The stochastic discount factor is assumed to be affine
in the excess factor returns. The test assets are excess returns to each factor in the model at hand
at horizons 1-, 12-; and 24-month horizons, in addition to the short-term real risk-free rate. Factor
MAPE is the annualized mean absolute pricing error for the factors in the model. The p-values
are from the J-tests from the GMM estimation. The GMM procedure corrects for autocorrelation,
cross-correlation, and heteroskedasticity in the moments using the Newey-West method with lag
length equal to 1.5 times the maximum horizon or 12 months, whichever is larger. FF refers to
Fama-French, DRM S refers to Daniel-Rottke-Mora-Santos (2017), VolMan refers to Moreira and
Muir (2017), while SY refers to Stambaugh and Yuan (2017). The last column of Panel B shows
the results for the FF5y ,ipran model when the test assets are MHR to the original FF5 factors.
See main text for further factor model descriptions. The sample is from July 1963 to June 2017.
The statistical significance of the parameters and the J-tests are given as follows: Three asterisks
denote significance at the 1% level, two at the 5% level, and one at the 10% level.
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Table 5: GMM tests of factor models using alternative horizons

Classic Factor Models

MKT+
Panel A: MKT BAB FF3 FF5 FF5+MOM
Factor MAPE (annualized) 0.007 0.027 0.027 0.031 0.022
p-value GMM J-test 0.800 0.255 0.000***  0.000** 0.000™**

Recent Factor Models

(FF5 assets)

Panel B: FF3pvrs FFSpumrs SY4  FEFdvonman  FFdvenran
Factor MAPE (annualized) 0.016 0.019 0.026 0.029 0.106
p-value GMM J-test 0.003*** 0.000***  0.001*** 0.048** 0.000***

The table gives the p-values from the J-tests from two-stage GMM estimation of the stochastic
discount factor implied by each factor model using shorter horizons relative to earlier results as
additional moments. The stochastic discount factor is assumed to be affine in the excess factor
returns. The test assets are excess returns to each factor in the model at hand at horizons 1-,
2-, 6-, and 12-month horizons, in addition to the short-term real risk-free rate. Factor MAPE is
the annualized mean absolute pricing error for the factors in each model in the two-stage GMM
estimation. The p-values are from the J-tests from the GMM estimation. The GMM procedure
corrects for autocorrelation, cross-correlation, and heteroscedasticity in the moments using the
Newey-West method with lag length equal to 1.5 times the maximum horizon or 12 months,
whichever is larger. FF' refers to Fama-French, DRMS refers to Daniel-Rottke-Mora-Santos,
VolMan refers to Moreira and Muir (2017), while SY refers to Stambaugh and Yuan (2017). The
last column of Panel B shows the results for the FF5y ,;370n model when the test assets are MHR
to the original FF5 factors. See main text for further factor model descriptions. The sample is from
July 1963 to June 2017. The statistical significance of the parameters and the J-tests are given as
follows: Three asterisks denote significance at the 1% level, two at the 5% level, and one at the
10% level.
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Table 6: Long-run factor mispricing as monthly factor return instruments: GRS tests

Standard Factor Models

MKT+
Panel A: MKT BAB FF3 FF5 FF5+MOM
Max Sharpe ratio of factors 0.388 0.657 0.690 1.089 1.246
Max Information ratio 0.370 0.419 0.518 0.519 0.585
p-value GRS test 0.026* 0.033** 0.014* 0.038* 0.025*
p-value, out-of-sample instruments  0.255 0.031** 0.001***  0.037* 0.002***

Alternative Factor Models
(FF5 assets)

Panel B: FF3pmrs FFSpurs  SY4  FFSvaman  FFdvonan
Max Sharpe ratio of factors 0.971 1.544 1.653 1.159 1.159
Max Information ratio 0.772 0.758 0.441 0.000 0.474
p-value GRS test 0.000*** 0.001**  0.086* 0.624 0.064*
p-value, out-of-sample instruments  0.000*** 0.000***  0.011* 0.155 0.139

The table gives the Gibbons-Ross-Shanken (GRS) test p-values from regressions of managed factor
returns, where the time-varying factor weights are based on lagged multi-horizon pricing errors.
The horizons considered are 2, 6, 12, and 24 months. For each factor model, the test assets are
managed positions in the factors of the factor model at hand. So, for the market model, the test
assets are four managed portfolios (corresponding to the four pricing error horizons) in the MKT
factor. “Out-of-sample instruments” means the pricing errors used as instrument are estimated
using only data up to time t, when considering time t+1 returns. Max. Information Ratio (IR)
refers to the square root of the max expected Sharpe ratio one can achieve when combining the
test assets and hedge out the unconditional factor exposures. See MacKinlay (1995) and the main
text for the formula leading to an unbiased estimate of this quantity. FF refers to Fama-French,
DRMS refers to Daniel-Rottke-Mora-Santos, VolMan refers to Moreira and Muir (2017), while
SY refers to Stambaugh and Yuan (2017). The last column of Panel B shows the results for the
FF5voipmran model when the test assets are MHR to the original FF5 factors. See main text for
further factor model descriptions. The sample is from July 1963 to June 2017. Three asterisks
denote significance at the 1% level, two at the 5% level, and one at the 10% level.
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